Background: Photothermal therapy (PTT) is a promising method in the field of cancer hyperthermia. In this method, interaction between laser light and photosensitizer material, such as plasmonic nanoparticles, leads into a localized heating. Recent efforts in the area of PTT aim to exploit targeting strategies for preferential accumulation of plasmonic nanoparticles within the tumor.
View Article and Find Full Text PDFThe high prescribed dose of anticancer drugs and their resulting adverse effects on healthy tissue are significant drawbacks to conventional chemotherapy (CTP). Ideally, drugs should have the lowest possible degree of interaction with healthy cells, which would diminish any adverse effects. Therefore, an ideal scenario to bring about improvements in CTP is the use of technological strategies to ensure the efficient, specific, and selective transport and/or release of drugs to the target site.
View Article and Find Full Text PDFPurpose: The aim of the present study was to develop a new strategy for combined thermo-chemotherapy of cancer. For this purpose, we used ultrasound waves [1 MHz; 1 W/cm; 10 min] in combination with a sonosensitizing nanoplatform, named ACA, made of alginate co-loaded with cisplatin and gold nanoparticles (AuNPs).
Methods: Various combinatorial treatment regimens consisting of ultrasound, AuNPs, cisplatin, and ACA nanoplatform were studied in vivo.
J Photochem Photobiol B
October 2019
Despite the immense benefits of nanoparticle-assisted photothermal therapy (NPTT) in cancer treatment, the limited method and device for detecting temperature during heat operation significantly hinder its overall progress. Development of a pre-treatment planning tool for prediction of temperature distribution would greatly improve the accuracy and safety of heat delivery during NPTT. Reliable simulation of NPTT highly relies on accurate geometrical model description of tumor and determining the spatial location of nanoparticles within the tissue.
View Article and Find Full Text PDFRecent efforts in the area of photothermal therapy (PTT) follow two important aims: (i) selective targeting of plasmonic nanoparticles to the tumor and (ii) real-time guidance of PTT operation through employing multimodal imaging modalities. In the present study, we utilized a multifunctional theranostic nanoplatform constructed from iron (III) oxide-gold (FeO@Au) core-shell nanoparticles to fulfill these aims. The Au shell exhibits surface plasmon resonance, a property that is exploited to realize PTT.
View Article and Find Full Text PDFThe current interest in cancer research is being shifted from individual therapy to combinatorial therapy. In this contribution, a novel multifunctional nanoplatform comprising alginate nanogel co-loaded with cisplatin and gold nanoparticles (AuNPs) has been firstly developed to combine photothermal therapy and chemotherapy. The antitumor efficacy of the as-prepared nanocomplex was tested against CT26 colorectal tumor model.
View Article and Find Full Text PDFPurpose: As a noninvasive and nonionizing radiation, ultrasound can be focused remotely, transferring acoustic energy deep in the body, thereby addressing the penetration depth barrier of the light-based therapies. In cancer therapy, the effectiveness of ultrasound can be enhanced by utilizing nanomaterials that exhibit sonosensitizing properties called as nanosonosensitizers. The gold nanoparticle (AuNP) has been recently presented as a potent nanosonosensitizer with the potential to simultaneously enhance both the thermal and mechanical interactions of ultrasound with the tissue of the human body.
View Article and Find Full Text PDFThe biomedical applications of gold nanoparticles (AuNPs) have experienced rapid growth in recent years, due to their expected benefits in medical imaging and therapy. In this work, we report the development of a theranostic nanocomplex constructed from alginate hydrogel co-loaded with cisplatin and AuNPs (abbreviated as ACA) for simultaneous drug delivery and computed tomography imaging. CT26 cells derived from mouse colon adenocarcinoma were exposed to various concentrations of ACA nanocomplex (for 24 h) and the cytotoxicity was measured using MTT assay.
View Article and Find Full Text PDFObjective: To study the effects of ultrasound irradiation on the release profile of 5-fluorouracil (5-Fu) loaded magnetic poly lactic co-glycolic acid (PLGA) nanocapsules. Also, the controlled drug-release behaviour of the nanocapsules was mathematically investigated.
Methods: The nanocapsules were synthesized, dispersed in phosphate buffered saline (PBS), transferred to a dialysis bag, and finally, irradiated by various ultrasound parameters (1 or 3MHz; 0.
Hyperthermia is considered as a new approach for cancer therapy. Non-selectivity of tissue heating in conventional hyperthermia methods results in collateral damages to healthy tissues and this is the greatest obstacle against hyperthermia in clinic. Herein, to promote the efficiency of conventional hyperthermia methods, nanoparticle-enhanced heating from 1MHz ultrasound was investigated in vitro and in vivo.
View Article and Find Full Text PDFIn this work, we present an in-depth review of recent breakthroughs in nanotechnology for hyperthermia cancer therapy. Conventional hyperthermia methods do not thermally discriminate between the target and the surrounding normal tissues, and this non-selective tissue heating can lead to serious side effects. Nanotechnology is expected to have great potential to revolutionize current hyperthermia methods.
View Article and Find Full Text PDF