Many animals use chemical squirting or spraying behavior as a defensive response. Some members of the scorpion genus Parabuthus (family Buthidae) can spray their venom. We examined the stimulus control and characteristics of venom spraying by Parabuthus transvaalicus to better understand the behavioral context for its use.
View Article and Find Full Text PDFDespite extensive study of poisonous and venomous organisms and the toxins they produce, a review of the literature reveals inconsistency and ambiguity in the definitions of 'poison' and 'venom'. These two terms are frequently conflated with one another, and with the more general term, 'toxin.' We therefore clarify distinctions among three major classes of toxins (biological, environmental, and anthropogenic or man-made), evaluate prior definitions of venom which differentiate it from poison, and propose more rigorous definitions for poison and venom based on differences in mechanism of delivery.
View Article and Find Full Text PDFWe investigated the biochemical profile of regenerated venom of the scorpion Parabuthus transvaalicus in relation to its metabolic cost and toxicity. Using a closed-system respirometer, we compared oxygen consumption between milked and unmilked scorpions to determine the metabolic costs associated with the first 192 h of subsequent venom synthesis. Milked scorpions had a substantially (21%) higher mean metabolic rate than unmilked scorpions, with the largest increases in oxygen consumption occurring at approximately 120 h, 162 h, and 186 h post-milking.
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
June 2007
Scorpion venom has many components, but is mainly made up of water, salts, small molecules, peptides, and proteins. One can reasonably assume that the production and storage of this complex secretion is an expensive metabolic investment. However, to date, no study has addressed the costs associated with the regeneration of venom by scorpions.
View Article and Find Full Text PDF