Diagnosis of bruxism is challenging because not all contractions of the masticatory muscles can be classified as bruxism. Conventional methods for sleep bruxism detection vary in effectiveness. Some provide objective data through EMG, ECG, or EEG; others, such as dental implants, are less accessible for daily practice.
View Article and Find Full Text PDFIn this paper, we propose an improved clustering algorithm for wireless sensor networks (WSNs) that aims to increase network lifetime and efficiency. We introduce an enhanced fuzzy spider monkey optimization technique and a hidden Markov model-based clustering algorithm for selecting cluster heads. Our approach considers factors such as network cluster head energy, cluster head density, and cluster head position.
View Article and Find Full Text PDFEmploying a combination of Polyethylene terephthalate (PET) thermoforming and 3D-printed cylindrical patterns, we carefully engineer a linear resistive temperature sensor. This intricate process involves initial PET thermoforming, yielding a hollow cylindrical chamber. This chamber is then precisely infused with a composite fluid of graphite and water glue.
View Article and Find Full Text PDFWith widely deployed smart meters, non-intrusive energy measurements have become feasible, which may benefit people by furnishing a better understanding of appliance-level energy consumption. This work is a step forward in using graph signal processing for non-intrusive load monitoring (NILM) by proposing two novel techniques: the spectral cluster mean (SC-M) and spectral cluster eigenvector (SC-EV) methods. These methods use spectral clustering for extracting individual appliance energy usage from the aggregate energy profile of the building.
View Article and Find Full Text PDFHematite (FeO) is one of the best candidates for photoelectrochemical water splitting due to its abundance and suitable bandgap. However, its efficiency is mostly impeded due to the intrinsically low conductivity and poor light absorption. In this study, we targeted this intrinsic behavior to investigate the thermodynamic stability, photoconductivity and optical properties of rhodium doped hematite using density functional theory.
View Article and Find Full Text PDFBiomed Eng Online
December 2011
The aim of this research is to propose a small intestine model for electrically propelled capsule endoscopy. The electrical stimulus can cause contraction of the small intestine and propel the capsule along the lumen. The proposed model considered the drag and friction from the small intestine using a thin walled model and Stokes' drag equation.
View Article and Find Full Text PDFThe aim of this study is to implement a duodenum identification mechanism for capsule endoscopes because commercially available capsule endoscopes sometimes present a false negative diagnosis of the duodenum. One reason for the false negative diagnosis is that the duodenum is the fastest moving part within the gastrointestinal tract and the current frame rate of the capsule is not fast enough. When the capsule can automatically identify that it is in the duodenum, the frame rate of the capsule can be temporarily increased to reduce the possibility of a false negative diagnosis.
View Article and Find Full Text PDFThis paper presents the simulation results of a novel technique to stimulate the brain using a carbon nanotubes (CNT) based optically activated stimulator. This technique could be a promising alternative solution to overcome the limitations occurring in the conventional electrical stimulation of the brain and the newly developed opto-genetic stimulation. In this technique, the CNT stimulator, which generated an electrical current when exposed to light, was implanted in the brain.
View Article and Find Full Text PDF