The label-free detection and analysis of cancer cells using portable biosensing devices is crucial and promising. In this study, a novel reusable biosensing platform with a microfluidic-like based on terahertz plasmonic metasurfaces utilizing graphene integrated with an all-silicon groove for detecting liquid live cancer cells was developed. The proposed biosensor platform stands out because it can differentiate between the concentrations of three types of cancer cells by monitoring changes in resonance intensity and phase difference.
View Article and Find Full Text PDFIn this study, a hybrid amorphous strontium titanate (STO) and terahertz metasurface were studied. Because of the excellent physical properties of amorphous STO, such as its dielectric properties and high transmittance in the terahertz region, it plays a core role in realizing a novel terahertz (THz) temperature sensor with high performance in the temperature range of 500-608 K. A blue shift of the absorption peaks appeared for the THz wave as the temperature increased, which confirmed the temperature-sensing function.
View Article and Find Full Text PDFThe exploitation of heterosis to integrate parental advantages is one of the fastest and most efficient ways of rice breeding. The genomic architecture of heterosis suggests that the grain yield is strongly correlated with the accumulation of numerous rare superior alleles with positive dominance. However, the improvements in yield of hybrid rice have shown a slowdown or even plateaued due to the limited availability of complementary superior alleles.
View Article and Find Full Text PDFFood safety is an important consideration for the food industry and for daily life, and food additives are essential in the modern food industry. Graphene-based metamaterial sensors are of great value and have potential applications in the detection of food additives, due to their ultra-sensitivity. This paper proposes a metasurface sensor consisting of graphene and dual elliptical ring resonators (Gr-DERRs) sensor for the detection of two common food additives.
View Article and Find Full Text PDFHeading date (flowering time), which greatly influences regional and seasonal adaptability in rice (Oryza sativa), is regulated by many genes in different photoperiod pathways. Here, we characterized a heading date gene, Early heading date 5 (Ehd5), using a modified bulked segregant analysis method. The ehd5 mutant showed late flowering under both short-day and long-day conditions, as well as reduced yield, compared to the wild type.
View Article and Find Full Text PDFBoth grid-like firing fields and theta oscillation are hallmarks of grid cells in the mammalian brain. While bump attractor dynamics have generally been recognized as the substrate for grid firing fields, how theta oscillation arises and interacts with persistent activity in a cortical circuit remains obscure. Here, we report that the theta oscillation intrinsically emerges in a continuous attractor network composed of principal neurons and interneurons.
View Article and Find Full Text PDFBiosensors based on terahertz (THz) metasurfaces have recently attracted widespread attention. However, few have been reported so far because it is a challenge to achieve ultrasensitive multidimensional detection in the THz spectrum. Here, we propose a novel THz biosensor that consists of a metasurfaces and a metal oxide semiconductor-like structure (MOSLS), which is based on patterned graphene-polyimide-perovskite.
View Article and Find Full Text PDFGrid cells provide a metric representation of self-location. They are organized into modules, showing discretized scales of grid spacing, but the underlying mechanism remains elusive. In this modeling study, we propose that the hexagonal lattice of pyramidal cell patches may underlie the discretization of grid spacing and orientation.
View Article and Find Full Text PDFMonolayer (ML) graphdiyne, a two-dimensional semiconductor with appropriate band gap and high carrier mobility, is a promising candidate for channel material in field effect transistors (FETs). Using density functional theory combined with non-equilibrium Green's function method, we systematically investigate the contact and transport properties of graphdiyne FETs with various electrodes, including metals (Cu, Au, Ni, Al and Ag) and MXenes (CrC, TaC and VC). Strong interaction can be found between ML graphdiyne and the Cu, Ni and MXenes electrodes with indistinguishable band structure of ML graphdiyne, while weak or medium interaction exists in the contacts of ML graphdiyne and the Au, Al and Ag electrodes where the band structure of ML graphdiyne remains intact.
View Article and Find Full Text PDFHybrid rice breeding for exploiting hybrid vigor, heterosis, has greatly increased grain yield. However, the heterosis-related genes associated with rice grain production remain largely unknown, partly because comprehensive mapping of heterosis-related traits is still labor-intensive and time-consuming. Here, we present a quantitative trait locus (QTL) mapping method, GradedPool-Seq, for rapidly mapping QTLs by whole-genome sequencing of graded-pool samples from F progeny via bulked-segregant analysis.
View Article and Find Full Text PDFA suspended carbon nanotube (SCNT)-based field effective transistor (SCNT-FET), which was fabricated by utilizing the surface tension of liquid silver to suspend a CNT between two Pd electrodes, was proposed for the detection of DNA hybridization. Benefits from the separation between the CNT and the substrates could be observed; namely, the conductivity of a SCNT-FET was much higher (two orders of magnitude) than that of a FET based on an unsuspended CNT and about 50% sensing surface of CNT was freed from substrate. The Slater-Koster tight-binding method was adopted for geometry optimization and transport property calculation of the SCNT bound with DNA.
View Article and Find Full Text PDFModulating the electronic and magnetic properties of phosphorene is important for fabricating multi-functional electronic and spintronic devices. Employing density functional theory combined with the non-equilibrium Green's function, we systematically investigate the electronic, magnetic and transport properties of hydrogenated armchair phosphorene nanoribbons chemically modified by 3d transition metal atoms (Sc, Ti, V, Cr, Mn, Fe, Co and Ni). With chemical adsorption of transition metal atoms, the phosphorene nanoribbons exhibit excellent spin-polarized transport properties.
View Article and Find Full Text PDFRational synthesis of photocatalytic materials is an effective way to improve their performance. In this work, to optimize the S precursors, a series of MnCdS (MCS) were first hydrothermally synthesized with the prevalent thiourea (TA), thioacetamide (TAA) and L-cysteine (L-Cys) as the S sources. The optimum feed ratio of Mn/Cd was then determined based on the optimized S precursor.
View Article and Find Full Text PDFWhen published, this article did not initially appear open access. This error has been corrected, and the open access status of the paper is noted in all versions of the paper.
View Article and Find Full Text PDFAlthough the CdS photocatalyst has been extensively investigated, a rational hydrothermal synthesis route is still required to prepare highly active CdS for H evolution reaction (HER). To optimize the precursor of the sulfur source, three prevalent organic sulfur sources of thiourea (TA), thioacetamide (TAA) and l-cysteine (l-Cys) were used for hydrothermal synthesis of CdS. Their effects on the crystallographic structure, morphology, optical property, band structure, and photocatalytic HER performance of the products were then investigated systematically.
View Article and Find Full Text PDFThe rich genetic diversity in Oryza sativa and Oryza rufipogon serves as the main sources in rice breeding. Large-scale resequencing has been undertaken to discover allelic variants in rice, but much of the information for genetic variation is often lost by direct mapping of short sequence reads onto the O. sativa japonica Nipponbare reference genome.
View Article and Find Full Text PDFLong awns are important for seed dispersal in wild rice (Oryza rufipogon), but are absent in cultivated rice (Oryza sativa). The genetic mechanism involved in loss-of-awn in cultivated rice remains unknown. We report here the molecular cloning of a major quantitative trait locus, An-1, which regulates long awn formation in O.
View Article and Find Full Text PDF