Publications by authors named "Zi-qiang Cheng"

Bimetallic nanomaterials, which exhibit a combination of the properties associated with two different metals, have enabled innovative applications in nanoscience and nanotechnology. Here, we introduce the fabrication of dendritic Au/Ag bimetallic nanostructures for surface-enhanced Raman scattering (SERS) and catalytic applications. The dendritic Au/Ag bimetallic nanostructures were prepared by combining the electrochemical deposition and replacement reaction.

View Article and Find Full Text PDF

In order to remarkably enhance the absorption capability of (CHNH)PbI, a tunable narrow-band (CHNH)PbI-based perfect absorber based on the critical coupling with guided resonance is proposed. By using the finite-difference time-domain (FDTD) simulations, a complete absorption peak is achieved at the wavelength of 1310 nm. Moreover, we have compared the simulation results with theoretical calculations, which agree well with each other.

View Article and Find Full Text PDF

A suspended monolayer graphene has only about 2.3% absorption rate in visible and infrared band, which limits its optoelectronic applications. To significantly increase graphene's absorption efficiency, a tunable dual-band and polarization-insensitive coherent perfect absorber (CPA) is proposed in the mid-infrared regime, which contains the silicon array coupled in double-layers graphene waveguide.

View Article and Find Full Text PDF

In this study, In(OH)₃ nanocrystals with three morphologies including rods, cubes and spheres were synthesized through a hydrothermal method. The morphology and crystalline were manipulated by controlling the growth speed and the addition of ascorbic acid. The InVO₄ nanocrystals were obtained by a process sacrificing In(OH)₃ templates.

View Article and Find Full Text PDF

Highly branched metallic nanostructures, which possess a large amount of catalyst active sites and surface-enhanced Raman scattering (SERS) hot spots owing to their large surface areas, multi-level branches, corners, and edges, have shown potential in various applications including catalysis and SERS. In this study, well-defined dendritic silver (Ag) nanostructures were prepared by a facile and controllable electrochemical deposition strategy. The morphology of Ag nanostructures is controlled by regulating electrodeposition time and concentration of AgNO in the electrolyte solution.

View Article and Find Full Text PDF

Superinfection of Marek's disease virus (MDV) and avian leukosis virus subgroup J (ALV-J) causes lethal neoplasia and death in chickens. However, whether there is synergism between the two viruses in viral replication and pathogenicity has remained elusive. In this study, we found that the superinfection of MDV and ALV-J increased the viral replication of the two viruses in RNA and protein level, and synergistically promoted the expression of IL-10, IL-6, and TGF-β in chicken embryo fibroblasts (CEF).

View Article and Find Full Text PDF

Three component hybrid (MoS-TiO)/Au substrate is fabricated by loading plasmonic Au nanorods on the MoS nanosheets coated TiO nanorod arrays. It is used for photoelectrochemical (PEC) cell and photocatalyst for hydrogen generation. Owing to the charge transfer between the MoS-TiO hetero-structure, the PEC current density and hydrogen generation of TiO nanoarrays are enhanced 2.

View Article and Find Full Text PDF

We report a plasmon-assisted growth of metal and semiconductor onto the tips of Ag nanotriangles (AgNTs) under light irradiation. The site-selective growth of Ag onto AgNTs are firstly demonstrated on the copper grids and amine-coated glass slides. As the irradiation time increases, microscopic images indicate that AgNTs gradually touch with each other and finally "weld" tip-to-tip together into the branched chains.

View Article and Find Full Text PDF

Plasmon-mediated energy transfer is highly desirable in photo-electronic nanodevices, but the direct injection efficiency of "hot electrons" in plasmonic photo-detectors and plasmon-sensitized solar cells (plasmon-SSCs) is poor. On another front, Fano resonance induced by strong plasmon-exciton coupling provides an efficient channel of coherent energy transfer from metallic plasmons to molecular excitons, and organic dye molecules have a much better injection efficiency in exciton-SSCs than "hot electrons". Here, we investigate enhanced light-harvesting of chlorophyll-a molecules strongly coupled to Au nanostructured films via Fano resonance.

View Article and Find Full Text PDF

This paper describes a facile method for the synthesis of Au/AuAg/Ag2S/PbS core-multishell nanorods with double trapping layers. The synthesis, in sequence, involved deposition of Ag shells onto the surfaces of Au nanorod seeds, formation of AuAg shells by a galvanic replacement reaction, and overgrowth of the Ag2S shells and PbS shells. The resulting core-multishell nanorod possesses an air gap between the Au core and the AuAg shell.

View Article and Find Full Text PDF

Seeking plasmonic nanostructures with large field confinement and enhancement is significant for photonic and electronic nanodevices with high sensitivity, reproducibility, and tunability. Here, we report the synthesis of plasmonic arrays composed of two-segment dimer nanorods and coaxial cable nanorods with ∼1 nm gap insulated by a self-assembled Raman molecule monolayer. The gap-induced plasmon coupling generates an intense field in the gap region of the dimer junction and the cable interlayer.

View Article and Find Full Text PDF

Colloidal semiconductor quantum dots have three-dimensional confined excitons with large optical oscillator strength and gain. The surface plasmons of metallic nanostructures offer an efficient tool to enhance exciton-exciton coupling and excitation energy transfer at appropriate geometric arrangement. Here, we report plasmon-mediated cooperative emissions of approximately one monolayer of ensemble CdSe/ZnS quantum dots coupled with silver nanorod complex cavities at room temperature.

View Article and Find Full Text PDF

Abstract:Subgroup J avian leukosis virus (ALV-J) infect cells by binding to the chNHE1 receptor protein of the host and causes tumors. The tumor incidence of the ALV-J-infected chickens was observed by histo pathology, and virus was isolated on DF-1 cell line. The ALV-J load and mRNA of chNHElreceptor protein were detected by real time PCR.

View Article and Find Full Text PDF

The transmembrane protein (TM) encoded by gp37 gene plays a critical role when virus fusion with cell membrane occurs. Several highly conserved regions in TM are important targets for antivirus studies. Studies on structure and function of TM will provide basic information for anti-retrovirus, especially for avian leukosis virus.

View Article and Find Full Text PDF

During July to November in 2007, several outbreaks of Hemangiomas in Hy-line Brown laying hens were observed in China. The virus that infected these flocks was identified in cultured DF-1 cells by PCR and indirect fluorescent assay (IFA) with ALV-J specific monoclonal antibody JE-9. The gp85 gene of one strain named WS0705 of ALV-J was cloned and expressed.

View Article and Find Full Text PDF

Two strains of Avian leukosis virus subgroup B (ALV-B) were isolated for the first time in China Hy-line White on the cultured DF-1 cells which were inoculated tissue samples from by an ELISA assay, a histopathology examination and a PCR-based diagnosis. The results from the ELISA assay indicated that the positive rate of serum antibodies to ALV-B and ALV-J virus were 16.3% (15/92) and 13% (12/92), respectively.

View Article and Find Full Text PDF

Myeloid leukosis (ML) cases were first diagnosed in a chicken flock of Chinese local breed in Shan dong province. The main symptom included wasting, weight loss, anemia. It caused about 10% mortality of about 15000 birds at the age of 120-day.

View Article and Find Full Text PDF