Introduction: The triggering receptor expressed on myeloid cells 2 (TREM2) arginine-47-histidine (R47H) mutation is a significant risk for Alzheimer's disease (AD) with unclear mechanisms. Previous studies focused on microglial amyloid-β (Aβ) phagocytosis with less attention on the impact of TREM2 mutation on blood monocytes.
Methods: Bone marrow transplantation (BMT) models were used to assess the contribution of blood monocytes carrying TREM2 mutation to AD.
Whole-brain genome editing to correct single-base mutations and reduce or reverse behavioral changes in animal models of autism spectrum disorder (ASD) has not yet been achieved. We developed an apolipoprotein B messenger RNA-editing enzyme, catalytic polypeptide-embedded cytosine base editor (AeCBE) system for converting C·G to T·A base pairs. We demonstrate its effectiveness by targeting AeCBE to an ASD-associated mutation of the MEF2C gene (c.
View Article and Find Full Text PDFAlthough CRISPR/Cas9-mediated gene editing is widely applied to mimic human disorders, whether acute manipulation of disease-causing genes in the brain leads to behavioral abnormalities in non-human primates remains to be determined. Here we induced genetic mutations in MECP2, a critical gene linked to Rett syndrome (RTT) and autism spectrum disorders (ASD), in the hippocampus (DG and CA1-4) of adolescent rhesus monkeys (Macaca mulatta) in vivo via adeno-associated virus (AAV)-delivered Staphylococcus aureus Cas9 with small guide RNAs (sgRNAs) targeting MECP2. In comparison to monkeys injected with AAV-SaCas9 alone (n = 4), numerous autistic-like behavioral abnormalities were identified in the AAV-SaCas9-sgMECP2-injected monkeys (n = 7), including social interaction deficits, abnormal sleep patterns, insensitivity to aversive stimuli, abnormal hand motions, and defective social reward behaviors.
View Article and Find Full Text PDFMethyl-CpG binding protein 2 (MeCP2) is a basic nuclear protein involved in the regulation of gene expression and microRNA processing. Duplication of MECP2-containing genomic segments causes MECP2 duplication syndrome, a severe neurodevelopmental disorder characterized by intellectual disability, motor dysfunction, heightened anxiety, epilepsy, autistic phenotypes, and early death. Reversal of the abnormal phenotypes in adult mice with MECP2 duplication (MECP2-TG) by normalizing the MeCP2 levels across the whole brain has been demonstrated.
View Article and Find Full Text PDFDuplication of MECP2 (Methyl-CpG-binding protein 2) causes severe mental illness called MECP2 duplication syndrome (MDS), yet the underlying mechanism remains elusive. Here we show, in Tg(MECP2) transgenic mouse brain or cultured neural progenitor cells (NPCs), that elevated MeCP2 expression promotes NPC differentiation into neurons. Ectopic expression of MeCP2 inhibits ADAM10 and thus the NOTCH pathway during NPC differentiation.
View Article and Find Full Text PDFCircular RNAs (circRNAs) have been demonstrated to be involved in various biological processes. Nevertheless, the function of circRNAs in medulloblastoma (MB) is still unknown. The present study aimed to investigate the expression profiles of circRNAs and related mechanisms for regulating the proliferation and growth of tumor cells in MB.
View Article and Find Full Text PDFRetinitis pigmentosa (RP) is a common form of inherited retinal degeneration that causes progressive loss of vision or adult blindness, characterized by the impairment of rod and cone photoreceptors. At present, mutations in >60 pathogenic genes have been confirmed to cause RP. The predominant modes of inheritance are autosomal dominant, autosomal recessive and X‑linked.
View Article and Find Full Text PDFThe coexistence of electrical and chemical synapses among interneurons is essential for interneuron function in the neocortex. However, it remains largely unclear whether electrical coupling between interneurons influences chemical synapse formation and microcircuit assembly during development. Here, we show that electrical and GABAergic chemical connections robustly develop between interneurons in neocortical layer 1 over a similar time course.
View Article and Find Full Text PDFMeCP2 encodes a methyl-CpG-binding protein that plays a critical role in repressing gene expression, mutations of which lead to Rett syndrome and autism. PTEN is a critical tumor suppressor gene that is frequently mutated in human cancers and autism spectrum disorders. Various studies have shown that both MeCP2 and PTEN proteins play important roles in brain development.
View Article and Find Full Text PDFThe basal forebrain (BF) cholinergic neurons have long been thought to be involved in behavioral wakefulness and cortical activation. However, owing to the heterogeneity of BF neurons and poor selectivity of traditional methods, the precise role of BF cholinergic neurons in regulating the sleep-wake cycle remains unclear. We investigated the effects of cell-selective manipulation of BF cholinergic neurons on the sleep-wake behavior and electroencephalogram (EEG) power spectrum using the pharmacogenetic technique, the 'designer receptors exclusively activated by designer drugs (DREADD)' approach, and ChAT-IRES-Cre mice.
View Article and Find Full Text PDFBackground: Young neurons in the developing brain establish a polarized morphology for proper migration. The PIWI family of piRNA processing proteins are considered to be restrictively expressed in germline tissues and several types of cancer cells. They play important roles in spermatogenesis, stem cell maintenance, piRNA biogenesis, and transposon silencing.
View Article and Find Full Text PDFNeural stem cell (NSC) proliferation and differentiation are required to replace neurons damaged or lost after hypoxic-ischemic events and recover brain function. Periostin (POSTN), a novel matricellular protein, plays pivotal roles in the survival, migration, and regeneration of various cell types, but its function in NSCs of neonatal rodent brain is still unknown. The purpose of this study was to investigate the role of POSTN in NSCs following hypoxia-ischemia (HI).
View Article and Find Full Text PDFPeriventricular leukomalacia (PVL) is a common ischemic brain injury in premature infants for which there is no effective treatment. The objective of this study was to determine whether transplanted mouse oligodendrocyte progenitor cells (OPCs) have neuroprotective effects in a rat model of PVL. Hypoxia-ischemia (HI) was induced in 3-day-old rat pups by left carotid artery ligation, followed by exposure to 6% oxygen for 2.
View Article and Find Full Text PDFMutations in the X-linked gene encoding the transcriptional modulator methyl-CpG-binding protein 2 (MeCP2) impair postnatal development of the brain. Here we use neuronal-type specific gene deletion in mice to show that conditional Mecp2 deletion in GABAergic parvalbumin-expressing (PV) cells (PV-Mecp2(-/y)) does not cause most Rett-syndrome-like behaviours, but completely abolishes experience-dependent critical period plasticity of primary visual cortex (V1) that develops normal visual functions. However, selective loss of Mecp2 in GABAergic somatostatin-expressing cells or glutamatergic pyramidal cells does not affect the critical period plasticity.
View Article and Find Full Text PDFAutism is an etiologically heterogeneous group of neurodevelopmental disorders, diagnosed mostly by the clinical behavioral phenotypes. The concept that the tumor-related gene PTEN plays a critical role in autism spectrum disorder has emerged over the last decade. In this review, we focus on the essential role of the PTEN signaling pathway in neuronal differentiation and the formation of neural circuitry, as well as genetic mouse models with Pten manipulations.
View Article and Find Full Text PDFSheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai)
January 2001
About a third of the expressed genes had expression level dramatically changed during adipocyte differentiation. By locating their chromosomal genetic map positions, the positional correlation of these differentiation-regulated genes with their expression regulation was analyzed. The results indicated that there was no chromosomal positional effect in regulating these genes'expression during adipocyte differentiation.
View Article and Find Full Text PDF