Vitiligo is a complex autoimmune disease characterized by the loss of melanocytes, leading to skin depigmentation. Despite advances in understanding its genetic and molecular basis, the precise mechanisms driving vitiligo remain elusive. Integrating multiple layers of omics data can provide a comprehensive view of disease pathogenesis and identify potential therapeutic targets.
View Article and Find Full Text PDFClin Cosmet Investig Dermatol
December 2024
Background: Due to limited treatment options, cutaneous warts caused by human papillomavirus (HPV) remain a significant clinical challenge. Furthermore, the genetic susceptibility and molecular basis of viral warts are not yet fully understood.
Methods: We utilized a multi-omics integration approach, encompassing genome-wide association study (GWAS) meta-analysis, summary data-based Mendelian randomization (SMR) analysis, and transcriptomic validation using the GSE136347 dataset.
Two fluorescent probes (L1 and L2) based on an imidazole unit were synthesized for the specific detection of ClO- and HSO3-. Density functional theory (DFT) calculations were used to assist in designing the probes. As predicted, L1 could be used to detect ClO- in real water samples and in living cells.
View Article and Find Full Text PDF