The understanding of cellular energy metabolism activation by engineered scaffolds remains limited, posing challenges for therapeutic applications in tissue regeneration. This study presents biosynthesized poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] and its major degradation product, 3-hydroxybutyrate (3HB), as endogenous bioenergetic fuels that augment cellular anabolism, thereby facilitating the progression of human bone marrow-derived mesenchymal stem cells (hBMSCs) towards osteoblastogenesis. Our research demonstrated that 3HB markedly boosts in vitro ATP production, elevating mitochondrial membrane potential and capillary-like tube formation.
View Article and Find Full Text PDFThe hierarchical three-dimensional (3D)-printing scaffolds based on microbial polyester poly(3-hydroxybutyrate--4-hydroxybutyrate) (P34HB) were designed and used for bone tissue engineering surface functionalization on 3D-printed (P34HB) scaffolds using polydopamine (PDA)-mediated recombinant human bone morphogenetic protein-2 (BMP2), leading to enhanced bone formation in a rat model with a calvarial critical-size bone defect. Taking advantage of the adhesive property of PDA under alkaline and aerobic conditions, osteogenic BMP2 was captured on the surface of PHA scaffolds, resulting in their enhanced osteogenic bioactivity, better stem cell adhesion and proliferation, and sustainable release of a bioactive substance over a period of 30 days. These contributed to notable differences in alkaline phosphatase (ALP) activity, mineralization, expressions of osteogenesis-related genes, as well as finally enhanced bone formation in rats.
View Article and Find Full Text PDFObjective: To investigate the genotypic diversity of Methicillin-resistant Staphylococcus aureus (MRSA) isolated from pigs and retail foods from different geographical areas in China and further to study the routes and rates of transmission of this pathogen from animals to food.
Methods: Seventy-one MRSA isolates were obtained from pigs and retail foods and then characterized by multi-locus sequencing typing (MLST), spa typing, multiple-locus variable number of tandem repeat analysis (MLVA), pulsed-field gel electrophoresis (PFGE), and antimicrobial susceptibility testing.
Results: All isolated MRSA exhibited multi-drug resistance (MDR).