Nanomaterials have excellent adsorption performance, which mainly depends on the adsorption thermodynamics that is related to the shape of the nanoparticles that make up the nanomaterial, but the effects of shape on the thermodynamics of adsorption are not fully clear. In this paper, theoretically, the general formulae of adsorption thermodynamic properties for nanoparticles with different shapes and different sizes were derived, and the influencing regularities and mechanisms on adsorption thermodynamic properties were discussed. Experimentally, the influences of the shape and size of nano-CeO2 on the thermodynamics of adsorption were studied in aqueous solution.
View Article and Find Full Text PDFA monomolecular layer model of the surface phase of microdroplets was proposed, and the exact expression for Tolman length was derived in this paper. The Tolman lengths of water, n-pentane, and n-heptane were calculated by the expression, and the values are quite in agreement with the experimental values. By use of the Gibbs-Tolman-Kening-Buff equation, the exact relationship between the microdroplet surface tension and the radius is obtained, and the predicted values agree well with the simulated values.
View Article and Find Full Text PDF