The ability to selectively target cancer cells makes antibody-drug conjugates (ADCs) promising therapeutic options. They have been tested in clinical trials as a vehicle for tumor-specific delivery of cytotoxic payloads for a range of cancers. However, systemic administration of oncolytic virotherapy is challenging, because only a small portion of injected viruses reach the target.
View Article and Find Full Text PDFIn 2015, oncolytic virotherapy was approved for clinical use, and in 2017, recombinant adeno-associated virus (AAV) delivery was also approved. However, systemic administration remains challenging due to the limited number of viruses that successfully reach the target site. Although the US Food and Drug Administration (FDA) permits the use of higher doses of AAV to achieve greater rates of transduction, most AAV still accumulates in the liver, potentially leading to toxicity there and elsewhere.
View Article and Find Full Text PDFThe blocking of programmed death-ligand 1 (PD-L1) in tumor cells represents a powerful strategy in cancer immunotherapy. Using viral vectors to deliver the cargo for inactivating the PD-L1 gene could be associated with host cell genotoxicity and concomitant immune attack. To develop an alternative safe gene delivery method, we designed a unique combination for miRNA34a delivery using a transgene carrier in the form of iron oxide magnetic nanoparticles (IONPs) via magnetofection to downregulate PD-L1 expression in cancer cells.
View Article and Find Full Text PDFThe development of stimuli-responsive polymeric micelles for targeted drug delivery has attracted much research interest in improving therapeutic outcomes. This study designs copolymers responsive to ultraviolet (UV) light and glutathione (GSH). A disulfide linkage is positioned between a hydrophilic poly(ethylene glycol) monomethyl ether (mPEG) and a hydrophobic -nitrobenzyl methacrylate (ONBMA) to yield amphiphilic copolymers termed mPEG-SS-pONBMA.
View Article and Find Full Text PDFOncolytic virotherapy was approved as a localized treatment for advanced melanoma by the US Food and Drug Administration (FDA) in 2015. Granulocyte macrophage colony stimulating factor (GM-CSF) encoded by clinical virus-infected tumor cells, acting as a pro-inflammatory cytokine or growth factor, increases tumor antigen presentation, leading to the activation of macrophages and T cells. Notably, tumor-secreted lactate can promote the suppressive functions of M2-polarized tumor-associated macrophages and subsequently promote tumor growth.
View Article and Find Full Text PDFThe peripheral benzodiazepine receptor (TSPO/PBR) is highly conserved among different species but with perplexing biochemical functions. Multiple ligands of TSPO show commendable regulatory activities in lots of biological functions, such as neuro-protection, cholesterol transport, and so on. These researches support that TSPO may be a potential target for disease treatment and drug development.
View Article and Find Full Text PDFMetabolic reprogramming of tumors with the accompanying reprogramming of glucose metabolism and production of lactate accumulation is required for the subsequent development of tumors. Recent evidence has indicated that tumor-secreted lactate can promote an oncolytic immune microenvironment within the tumor. Furthermore, tumor-secreted lactate directly induces polarization of tumor-supportive M2 macrophages.
View Article and Find Full Text PDFTargeted-therapy failure in treating nonsmall cell lung cancer (NSCLC) frequently occurs because of the emergence of drug resistance and genetic mutations. The same mutations also result in aerobic glycolysis, which further antagonizes outcomes by localized increases in lactate, an immune suppressor. Recent evidence indicates that enzymatic lowering of lactate can promote an oncolytic immune microenvironment within the tumour.
View Article and Find Full Text PDFCombining dual drugs in one vehicle to cancer cells offers spatiotemporal localization of drug at the site of action, leading to synergistic therapeutic effects and reduced side effects. To improve pH/redox responsiveness to the tumor microenvironments for cancer therapy, a pH/redox-responsive micelle based on poly(ε-caprolactone)-SS-poly(methacrylic acid) (PCL-SS-PMAA) diblock copolymer was fabricated for dual drug delivery. The PCL-SS-PMAA was formulated into a core-shell micelle (PSPm) in an aqueous solution.
View Article and Find Full Text PDFA novel dual-stimuli cleavable linker containing adjacent UV light-sensitive -nitrobenzyl ester and GSH-responsive disulfide bonds was first designed and synthesized to increase the responsivity to external stimuli. The functionalized linker was then utilized to prepare a dual-responsive amphiphilic block copolymer using ring-opening polymerization and atom transfer radical polymerization. The copolymer formed a micelle in an aqueous solution and showed dual-stimuli responses including photo-mediated cleavage under UV light irradiation at 365 nm as well as reduction-responsive degradation in the presence of a reducing agent.
View Article and Find Full Text PDFLung cancer is the primary cause of cancer-related death worldwide. 85%-90% of cases are non-small cell lung cancer (NSCLC) which characteristically exhibits altered epidermal growth factor receptor (EGFR) signaling is a major driver pathway. Unfortunately, therapeutic outcomes in treating NSCLC are compromised by the emergence of drug resistance in response to EGFR-tyrosine kinase inhibitor (TKI) targeted therapy due to the acquired resistance mutation EGFR T790M or activation of alternative pathways.
View Article and Find Full Text PDFDeregulated proliferation of tumors is generally associated with altered energy metabolism. A high rate of anaerobic glycolysis in solid tumors contributes to an acidification of pH to ∼6.7-7.
View Article and Find Full Text PDFPaclitaxel (PTX) is a widely used chemotherapy drug; however, frequent use causes multidrug resistance (MDR), which limits the utility of PTX against advanced non-small-cell lung cancer (NSCLC). PTX-resistant subline (NCI-H23-TXR) was established in vitro by exposing NCI-H23 cells to gradually increased concentrations of PTX in culture medium. Distinct Beclin expression of autophagy level was observed between resistant NCI-H23-TXR and parental NCI-H23 cells.
View Article and Find Full Text PDFSolid tumors characteristically display higher levels of lactate production due to anaerobic metabolism of glucose. Meanwhile, the U.S.
View Article and Find Full Text PDFLeptin is released in response to increased triglyceride storage in adipocytes and impacts body weight, but has drawbacks such as poor therapeutic effect and side effects when delivered systemically. Leptin also modifies adipocyte sensitivity to insulin to inhibit lipid accumulation. Here, light-triggered degradation of hydrogels was used to improve accuracy and effectiveness for sustained and controllable release.
View Article and Find Full Text PDFChemotherapy represents a conventional treatment for many cancers at different stages and is either solely prescribed or concomitant to surgery, radiotherapy, or both. However, treatment is tempered in instances of acquired drug resistance in response to either chemotherapy or targeted therapy, leading to therapeutic failure. To overcome this challenge, many studies focus on how cancer cells manipulate their genomes and metabolism to prevent drug influx and facilitate the efflux of accumulated chemotherapy drugs.
View Article and Find Full Text PDFIn clinical tumor therapy, chemotherapeutic routes have caused severe side effects; current delivery methods are unsatisfactory. Successful design of a remotely folate (FA)-grafted chitosan (CS)-coated magnetic nanoparticle (MNP) with low toxicity, has been achieved. A chemotherapeutic drug such as doxorubicin (DOX), is loaded in the MNP-based matrix (FA-grafted CS-DOX--MNP), which is coated by an activated target tumor molecule of FA-grafted CS biopolymer with the inclusion of tripolyphosphate (TPP) as a linker.
View Article and Find Full Text PDFClinical virotherapy has been successfully approved for use in cancer treatment by the U.S. Food and Drug Administration; however, a number of improvements are still sought to more broadly develop virotherapy.
View Article and Find Full Text PDFRepeated cancer treatments are common, owing to the aggressive and resistant nature of tumors. This work presents a chitosan (CS) derivative that contains self-doped polyaniline (PANI) side chains, capable of self-assembling to form micelles and then transforming into hydrogels driven by a local change in pH. Analysis results of small-angle X-ray scattering indicate that the sol-gel transition of this CS derivative may provide the mechanical integrity to maintain its spatial stability in the microenvironment of solid tumors.
View Article and Find Full Text PDFMicroRNA-128 (miR-128) is an attractive therapeutic molecule with powerful glioblastoma regulation properties. However, miR-128 lacks biological stability and leads to poor delivery efficacy in clinical applications. In our previous study, we demonstrated two effective transgene carriers, including polyethylenimine (PEI)-decorated superparamagnetic iron oxide nanoparticles (SPIONs) as well as chemically-conjugated chondroitin sulfate-PEI copolymers (CPs).
View Article and Find Full Text PDFAnticancer therapies are often compromised by nonspecific effects and challenged by tumour environments' inherent physicochemical and biological characteristics. Often, therapeutic effect can be increased by addressing multiple parameters simultaneously. Here we report on exploiting extravasation due to inherent vascular leakiness for the delivery of a pH-sensitive polymer carrier.
View Article and Find Full Text PDF