Gaining mechanistic understanding of oxygen activation on metal surfaces is a topical area of research in surface science. However, direct investigation of on-surface oxidation processes at the nanoscale and the empirical validation of oxygen activation pathways remain challenging for the conventional analytical tools. In this study, we applied tip-enhanced Raman spectroscopy (TERS) to gain mechanistic insights into oxygen activation on bulk Au(111) surface.
View Article and Find Full Text PDFNoninvasive and label-free analysis of cell membranes at the nanoscale is essential to comprehend vital cellular processes. However, conventional analytical tools generally fail to meet this challenge due to the lack of required sensitivity and/or spatial resolution. Herein, we demonstrate that tip-enhanced Raman spectroscopy (TERS) is a powerful nanoanalytical tool to analyze dipalmitoylphosphatidylcholine (DPPC) bilayers and human cell membranes with submolecular resolution in the vertical direction.
View Article and Find Full Text PDF