Publications by authors named "Zi-Shan Zhang"

Major research on photosynthesis has been carried out under steady light. However, in the natural environment, steady light is rare, and light intensity is always changing. Changing light affects (usually reduces) photosynthetic carbon assimilation and causes decreases in biomass and yield.

View Article and Find Full Text PDF

In nature, plants are exposed to a dynamic light environment. Fluctuations in light decreased the photosynthetic light utilization efficiency (PLUE) of leaves, and much more severely in C species than in C species. However, little is known about the plasticity of PLUE under dynamic light in C species.

View Article and Find Full Text PDF

Whether photosynthesis has improved with increasing yield in major crops remains controversial. Research in this area has often neglected to account for differences in light intensity experienced by cultivars released in different years. Light intensity is expected to be positively associated with photosynthetic capacity and the resistance of the photosynthetic apparatus to high light but negatively associated with light-utilization efficiency under low light.

View Article and Find Full Text PDF

Reactivation of photosynthetic carbon assimilation during high light after a low light interval is slower in C4 than in C3 leaves.

View Article and Find Full Text PDF

Wheat embryo globulin nutrient (WEGN), with wheat embryo globulin (WEG) as the main functional component, is a nutritional combination that specifically targets memory impairment. In this study, we explored the protective role of WEGN on Alzheimer's disease (AD)-triggered cognitive impairment, neuronal injury, oxidative stress, and acetylcholine system disorder. Specifically, we established an AD model via administration of d-galactose (d-gal) and Aluminum chloride (AlCl) for 70 days, then on the 36th day, administered animals in the donepezil and WEGN (300, 600, and 900 mg/kg) groups with drugs by gavage for 35 days.

View Article and Find Full Text PDF

The mitochondrial alternative pathway (AP) represents an important photoprotective mechanism for the chloroplast, but the temperature sensitivity of its photoprotective role is unknown. In this study, using the aox1a Arabidopsis mutant, the photoprotective role of the AP was verified under various temperatures, and the mechanism underlying the temperature sensitivity of the AP's photoprotective role was clarified. It was observed that the photoprotective role of the AP increased with rising temperature but was absent at low temperature.

View Article and Find Full Text PDF

Background: Plants are always exposed to dynamic light. The photosynthetic light use efficiency of leaves is lower in dynamic light than in uniform irradiance. Research on the influence of environmental factors on dynamic photosynthesis is very limited.

View Article and Find Full Text PDF

To improve light environment, photosynthetic capacity, and thus the yield of maize, the effects of directional planting on light distribution in canopy and photosynthetic characteristics of ear leaves, as well as the performance of PSII that closely related with photosynthetic characteristics and reflected by the rapid chlorophyll fluorescence kinetic curves were examined in Zhengdan 958 maize variety. The results showed that the orientation of leaves remarkably affected photosynthetically active radiation (PAR) interception of ear leaves, with PAR interception of ear leaves in southward treatment being 271.8% higher than that under northward treatment.

View Article and Find Full Text PDF

Bisphenol A (BPA), a widely distributed pollutant, suppresses photosynthesis in leaves. In previous studies on higher plants, the plants were treated by BPA through irrigation to root. This method cannot distinguish whether the BPA directly suppresses photosynthesis in leaves, or indirectly influences photosynthesis through affecting the function of root.

View Article and Find Full Text PDF

The mechanism by which the mitochondrial alternative oxidase (AOX) pathway contributes to photosystem II (PSII) photoprotection is in dispute. It was generally thought that the AOX pathway protects photosystems by dissipating excess reducing equivalents exported from chloroplasts through the malate/oxaloacetate (Mal/OAA) shuttle and thus preventing the over-reduction of chloroplasts. In this study, using the aox1a Arabidopsis mutant and nine other C3 and C4 plant species, we revealed an additional action model of the AOX pathway in PSII photoprotection.

View Article and Find Full Text PDF

Ultraviolet-B radiation (UV-B) is generally considered to negatively impact the photosynthetic apparatus and plant growth. UV-B damages PSII but does not directly influence PSI. However, PSI and PSII successively drive photosynthetic electron transfer, therefore, the interaction between these systems is unavoidable.

View Article and Find Full Text PDF

Previous investigations on photosynthesis have been performed on leaves irradiated from the adaxial surface. However, leaves usually sway because of wind. This action results in the alternating exposure of both the adaxial and abaxial surfaces to bright sunlight.

View Article and Find Full Text PDF

Pseudomonas syringae pv. tabaci (Pst) is a hemibiotrophic bacterial pathogen responsible for tobacco wildfire disease. Although considerable research has been conducted on the tobacco plant's tolerance to Pst, the role of light in the responses of the photosystems to Pst infection is poorly understood.

View Article and Find Full Text PDF

Background: Pseudomonas syringae pv. tabaci (Pst), which is the pathogen responsible for tobacco wildfire disease, has received considerable attention in recent years. The objective of this study was to clarify the responses of photosystem I (PSI) and photosystem II (PSII) to Pst infection in tobacco leaves.

View Article and Find Full Text PDF

Although root-to-shoot communication has been intensively investigated in plants under drought, few studies have examined root-to-shoot communication under chilling. Here we explored whether root-to-shoot communication contributes to the chilling-light tolerance of cucumber shoots and clarified the key signal involves in this communication. After leaf discs chilling-light treatment, the photoinhibitions of Photosystem I (PSI) and Photosystem II (PSII) were similar in leaf discs of two cucumber varieties (JY-3 and JC-4).

View Article and Find Full Text PDF

The effects of chilling-light stress combined with additional stress on PSI and PSII photoinhibition and their interrelationship have not been known. To explore whether NaCl affects the PSI and PSII photoinhibition and their interrelationship under chilling-light treatment, the PSI and PSII activities were studied under chilling-light with or without NaCl treatment. The results showed that the extent of PSI and PSII photoinhibition both increased under chilling-light, while NaCl aggravated PSII photoinhibition and severely damaged cytochrome b₆/f complex but alleviated PSI photoinhibition.

View Article and Find Full Text PDF

The rapid induction of photosynthesis is critical for plants under light-fleck environment. Most previous studies about photosynthetic induction focused upon single leaf, but they did not consider the systemic integrity of plant. Here, we verified whether systemic signalling is involved in photosynthetic induction.

View Article and Find Full Text PDF

The development of PSII tolerance to stress and photoprotection mechanisms during leaf growth has been widely studied, however, knowledge about PSI photoinhibition and interaction between PSI and PSII under stress during leaf growth is still lacking. This study showed that during the chilling-light treatment, the photoinhibitions of PSI and PSII were more severe in young leaves than in fully-expanded leaves of cucumber, but the inhibition of CO2 assimilation and the accumulation of reactive oxygen species (ROS) were similar in leaves at different development stages. During the chilling-light treatment, PSII photoinhibition was positive correlated to PSI photoinhibition in leaves, however, this correlation no longer existed in leaves pretreated with DCMU, an inhibitor of electron transport from PSII to PSI.

View Article and Find Full Text PDF

Taking Rumex K-1 leaves as test materials, this paper studied the role of mitochondrial alternative oxidase (AOX) pathway in photoprotection under different light intensities. Under low light intensity (200 micromol x m(-2) x s(-1)), and after treated with salicylhydroxamic acid to inhibit the AOX pathway, the leaf actual photochemical efficiency of PS II, linear electron transport rate of photosynthesis, and photosynthetic O2 evolution rate all decreased significantly while the non-Q(B) reducing reaction center had a significant increase, indicating that under low light, the photoinhibition was aggravated while the scavenging enzymes of reactive oxygen species (ROS) increased, which avoided the over-accumulation of ROS and partially alleviated the photoinhibition of Rumex K-1 leaves. Under high light intensity (800 micromol x m(-2) x s(-1)), the inhibition of AOX pathway caused more severe photoinhibition, and the increased activities of ROS scavenging enzymes were insufficient to prevent the over-accumulation of ROS.

View Article and Find Full Text PDF

Taking Cucumis sativus L. (Jinchun No. 4) as test material, through the determination of chlorophyll-a fluorescence transient and light absorbance at 820 nm, and in combining with chlorophyll quenching, this paper studied the recovery of cucumber leaf' s PS I and PS I activities and the interactions between PS I and PS II in the recovery process at room temperature (25 degrees C) and under different light intensities (0, 15, and 200 micromol x m(-2) x s(-1)) after six hours of low temperature (4 degrees C) and strong light (200 micromol x m(-2) x s(-1)) stress.

View Article and Find Full Text PDF

Background: It is known that excess reducing equivalents in the form of NADPH in chloroplasts can be transported via shuttle machineries, such as the malate-oxaloacetate (OAA) shuttle, into the mitochondria, where they are efficiently oxidised by the mitochondrial alternative oxidase (AOX) respiratory pathway. Therefore, it has been speculated that the AOX pathway may protect plants from photoinhibition, but the mechanism by which this protection occurs remains to be elucidated.

Results: The observation that the malate-OAA shuttle activity and the AOX pathway capacity increased markedly after intense light treatment in Rumex K-1 leaves indicates that excess NADPH was transported from the chloroplasts and oxidised by the AOX pathway.

View Article and Find Full Text PDF

The purpose of this study was to explore how the mitochondrial AOX (alternative oxidase) pathway alleviates photoinhibition in Rumex K-1 leaves. Inhibition of the AOX pathway decreased the initial activity of NADP-malate dehydrogenase (EC 1.1.

View Article and Find Full Text PDF

Alternaria alternata has received considerable attention in current literature and most of the studies are focused on its pathogenic effects on plant chloroplasts, but little is known about the characteristics of programmed cell death (PCD) induced by metabolic products (MP) of A. alternata, the effects of the MP on mitochondrial respiration and its relation to PCD. The purpose of this study was to explore the mechanism of MP-induced PCD in non-green tobacco BY-2 cells and to explore the role of mitochondrial inhibitory processes in the PCD of tobacco BY-2 cells.

View Article and Find Full Text PDF