Using molecular dynamics simulations, we investigate systematically the water permeation properties across single-walled carbon nanotubes (SWCNT) in the presence of the terahertz electric field (TEF). With the TEF normal to the nanotube, the fracture of the hydrogen bonds results in the giant peak of net fluxes across the SWCNT with a three-fold enhancement centered around 14 THz. The phenomenon is attributed to the resonant mechanisms, characterized by librational, rotational, and rotation-induced responses of in-tube polar water molecules to the TEF.
View Article and Find Full Text PDF