Publications by authors named "Zi-Nan Wang"

Fiber-optic distributed acoustic sensing (DAS) has proven to be a revolutionary technology for the detection of seismic and acoustic waves with ultralarge scale and ultrahigh sensitivity, and is widely used in oil/gas industry and intrusion monitoring. Nowadays, the single-frequency laser source in DAS becomes one of the bottlenecks limiting its advance. Here, we report a dual-comb-based coherently parallel DAS concept, enabling linear superposition of sensing signals scaling with the comb-line number to result in unprecedented sensitivity enhancement, straightforward fading suppression, and high-power Brillouin-free transmission that can extend the detection distance considerably.

View Article and Find Full Text PDF

Objective: To study the differential metabolites in urine and the characteristics of metabolic pathway of middle school students with chronic fatigue syndrome (CFS) before and after exercise, and then explain the metabolic mechanism of CFS.

Methods: Eight male middle school students (age:17-19) with CFS were selectedas the CFS group according to CFS screening criteria of the U.S.

View Article and Find Full Text PDF

Purpose: Data about the association between serum uric acid and metabolic syndrome in healthy adolescents are sparse. This study examined this association and determined the optimal cutoffs for serum uric acid to predict metabolic syndrome among healthy adolescents.

Methods: During 2010-2011, we conducted a cross-sectional study of 927 adolescents (53.

View Article and Find Full Text PDF

All-optical temporal integrator using phase-shifted distributed-feedback semiconductor optical amplifier (DFB-SOA) is investigated. The influences of system parameters on its energy transmittance and integration error are explored in detail. The numerical analysis shows that, enhanced energy transmittance and integration time window can be simultaneously achieved by increased injected current in the vicinity of lasing threshold.

View Article and Find Full Text PDF

A novel optical amplification configuration based on ultra-long fiber laser with a ring cavity was proposed and applied to Brillouin optical time-domain analysis (BOTDA) sensing system, in order to extend the measurement distance significantly. The parameters used in the experiment were optimized, considering the main limitations of the setup, such as depletion, self-phase modulation (SPM) and pump-signal relative intensity noise (RIN) transfer. Through analyzing Brillouin gain spectrum, we demonstrated distributed sensing over 94 km of standard single-mode fiber with 3 meter spatial resolution and strain/temperature accuracy of 28 /1.

View Article and Find Full Text PDF

An ultra-long phase-sensitive optical time domain reflectometry (Φ-OTDR) that can achieve high-sensitivity intrusion detection over 131.5km fiber with high spatial resolution of 8m is presented, which is the longest Φ-OTDR reported to date, to the best of our knowledge. It is found that the combination of distributed Raman amplification with heterodyne detection can extend the sensing distance and enhances the sensitivity substantially, leading to the realization of ultra-long Φ-OTDR with high sensitivity and spatial resolution.

View Article and Find Full Text PDF

A configuration of hybrid distributed Raman amplification (H-DRA), that is formed by incorporating a random fiber laser (RFL) based 2nd-order pump and a low-noise laser-diode (LD) based 1st-order pump, is proposed in this paper. In comparison to conventional bi-directional 1st-order DRA, the effective noise figure (ENF) is found to be lower by amount of 0 to 4 dB due to the RFL-based 2nd-order pump, depending on the on-off gain, while the low-noise 1st-order Raman pump is used for compensating the worsened signal-to-noise ratio (SNR) in the vicinity towards the far end of the fiber and avoiding the potential nonlinear impact induced by excess injection of pump power and suppressing the pump-signal relative intensity noise (RIN) transfer. As a result, the gain distribution can be optimized along ultra-long fiber link, due to combination of the 2nd-order RFL and low-noise 1st-order pumping, making the transmission distance be extended significantly.

View Article and Find Full Text PDF

Distributed Raman amplification (DRA) based on ultra-long fiber laser (UL-FL) pumping with a ring cavity is promising for repeaterless transmission and sensing. In this work, the characteristics (including gain, nonlinear impairment and noise figure) for forward and backward pumping of the ring-cavity based DRA scheme are fully investigated. Furthermore, as a typical application of the proposed configuration, ultra-long-distance distributed sensing with Brillouin optical time-domain analysis (BOTDA) over 142.

View Article and Find Full Text PDF

The gain and noise characteristics of distributed Raman amplification (DRA) based on random fiber laser (RFL) (including forward and backward random laser pumping) have been experimentally investigated through comparison with conventional bi-directional 1st-order and 2nd-order pumping. The results show that, the forward random laser pumping exhibits larger averaged gain and gain fluctuation while the backward random laser pumping has lower averaged gain and nonlinear impairment under the same signal input power and on-off gain. The effective noise figure (ENF) of the forward random laser pumping is lower than that of the bi-directional 1st-order pumping by ~2.

View Article and Find Full Text PDF

In this paper, we reported the realization of 2nd-order random lasing in a half-opened fiber cavity, which is formed by a FBG with central wavelength at the 1st-order Raman Stokes wavelength and a single-mode fiber (SMF) performing as a random distributed feedback mirror. Using this proposed method, the threshold of 1st-order (2nd-order) random lasing is reduced to 0.7 (2.

View Article and Find Full Text PDF