Publications by authors named "Zi-Hui Mao"

Article Synopsis
  • - Epithelial sodium channel (ENaC) plays a crucial role in sodium reabsorption, primarily in the cortical collecting duct, while its activity in the inner medulla is often overlooked.
  • - The (pro)renin receptor (PRR), a new player in the renin-angiotensin system, influences ENaC regulation, specifically by boosting the activity of the α-ENaC subunit in the renal inner medulla.
  • - Soluble PRR (sPRR) enhances ENaC function through mechanisms involving Nox4-derived hydrogen peroxide and is particularly significant during overactivity of the renin-angiotensin-aldosterone system (RAAS).
View Article and Find Full Text PDF

Salt-sensitivity hypertension (SSH) is an independent predictor of cardiovascular event-related death. Despite the extensiveness of research on hypertension, which covers areas such as the sympathetic nervous system, the renin-angiotensin system, the vascular system, and the immune system, its pathogenesis remains elusive, with sub-optimal blood pressure control in patients. The gut microbiota is an important component of nutritional support and constitutes a barrier in the host.

View Article and Find Full Text PDF

Objectives: Potassium supplementation reduces blood pressure and the occurrence of cardiovascular diseases, with K + -induced natriuresis playing a potential key role in this process. However, whether these beneficial effects occur in diabetes remains unknown.

Methods: In this study, we examined the impact of high-K + intake on renal Na + /K + transport by determining the expression of major apical Na + transporters, diuretics responses (as a proxy for specific Na + transporter function), urinary Na + /K + excretion, and plasma Na + /K + concentrations in db/db mice, a model of type 2 diabetes mellitus.

View Article and Find Full Text PDF

Diabetes is closely associated with K disturbances during disease progression and treatment. However, it remains unclear whether K imbalance occurs in diabetes with normal kidney function. In this study, we examined the effects of dietary K intake on systemic K balance and renal K handling in streptozotocin (STZ)-induced diabetic mice.

View Article and Find Full Text PDF

Ferroptosis is a novel form of lipid peroxidation-driven, iron-dependent programmed cell death. Various metabolic pathways, including those involved in lipid and iron metabolism, contribute to ferroptosis regulation. The gut microbiota not only supplies nutrients and energy to the host, but also plays a crucial role in immune modulation and metabolic balance.

View Article and Find Full Text PDF

The global prevalence of diabetes mellitus (DM) has led to widespread multi-system damage, especially in cardiovascular and renal functions, heightening morbidity and mortality. Emerging antidiabetic drugs sodium-glucose cotransporter 2 inhibitors (SGLT2i), glucagon-like peptide-1 receptor agonists (GLP-1RAs), and dipeptidyl peptidase-4 inhibitors (DPP-4i) have demonstrated efficacy in preserving cardiac and renal function, both in type 2 diabetic and non-diabetic individuals. To understand the exact impact of these drugs on cardiorenal protection and underlying mechanisms, we conducted a comprehensive review of recent large-scale clinical trials and basic research focusing on SGLT2i, GLP-1RAs, and DPP-4i.

View Article and Find Full Text PDF

Objectives: Functional impairment of renal sodium handling and blood pressure (BP) homeostasis is an early characteristic manifestation of type 1 diabetes. However, the underlying mechanisms remain unclear.

Methods: Metabolic cages, radio-telemetry, immunoblotting, and electrophysiology were utilized to examine effects of high salt (8% NaCl, HS) intake on Na + /K + balance, BP, Na + -Cl - cotransporter (NCC) function, and basolateral K + channel activity in the distal convoluted tubule (DCT) under diabetic conditions.

View Article and Find Full Text PDF

Aim: Cyclosporin A (CsA) is a widely used immunosuppressive drug that causes hypertension and hyperkalemia. Moreover, CsA-induced stimulation of the thiazide-sensitive NaCl cotransporter (NCC) in the kidney has been shown to be responsible for the development of hyperkalemic hypertension. In this study, we tested whether CsA induces the activation of NCC by stimulating the basolateral Kir4.

View Article and Find Full Text PDF

Background: Accumulating evidence indicates that mitophagy is crucial for the development of diabetic nephropathy (DN). However, little is known about the key genes involved. The present study is to identify the potential mitophagy-related genes (MRGs) in DN.

View Article and Find Full Text PDF

Diabetic kidney disease (DKD) is one of the major microvascular complications of diabetes mellitus and is also one of the serious risk factors in cardiovascular events, end-stage renal disease, and mortality. DKD is associated with the diversified, compositional, and functional alterations of gut microbiota. The interaction between gut microbiota and host is mainly achieved through metabolites, which are small molecules produced by microbial metabolism from exogenous dietary substrates and endogenous host compounds.

View Article and Find Full Text PDF

The kidney is a complex organ comprising various functional partitions and special cell types that play important roles in maintaining homeostasis in the body. Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease and is an independent risk factor for cardiovascular diseases. Owing to the complexity and heterogeneity of kidney structure and function, the mechanism of DKD development has not been fully elucidated.

View Article and Find Full Text PDF