Publications by authors named "Zi-Hong Liu"

The "symmetric mass generation" (SMG) quantum phase transition discovered in recent years has attracted great interest from both condensed matter and high energy theory communities. Here, interacting Dirac fermions acquire a gap without condensing any fermion bilinear mass term or any concomitant spontaneous symmetry breaking. It is hence beyond the conventional Gross-Neveu-Yukawa-Higgs paradigm.

View Article and Find Full Text PDF

The fermion disorder operator has been shown to reveal the entanglement information in 1D Luttinger liquids and 2D free and interacting Fermi and non-Fermi liquids emerging at quantum critical points (QCPs) [W. Jiang et al., arXiv:2209.

View Article and Find Full Text PDF

Motivated by the physics of spin-orbital liquids, we study a model of interacting Dirac fermions on a bilayer honeycomb lattice at half filling, featuring an explicit global SO(3)×U(1) symmetry. Using large-scale auxiliary-field quantum Monte Carlo (QMC) simulations, we locate two zero-temperature phase transitions as function of increasing interaction strength. First, we observe a continuous transition from the weakly interacting semimetal to a different semimetallic phase in which the SO(3) symmetry is spontaneously broken and where two out of three Dirac cones acquire a mass gap.

View Article and Find Full Text PDF

This review summarizes recent developments in the study of fermionic quantum criticality, focusing on new progress in numerical methodologies, especially quantum Monte Carlo methods, and insights that emerged from recently large-scale numerical simulations. Quantum critical phenomena in fermionic systems have attracted decades of extensive research efforts, partially lured by their exotic properties and potential technology applications, and partially awakened by the profound and universal fundamental principles that govern these quantum critical systems. Due to the complex and non-perturbative nature, these systems face the most difficult and challenging problems in the study of modern condensed matter physics, and many important fundamental problems remain open.

View Article and Find Full Text PDF

Metallic quantum criticality is among the central themes in the understanding of correlated electronic systems, and converging results between analytical and numerical approaches are still under review. In this work, we develop a state-of-the-art large-scale quantum Monte Carlo simulation technique and systematically investigate the itinerant quantum critical point on a 2D square lattice with antiferromagnetic spin fluctuations at wavevector [Formula: see text]-a problem that resembles the Fermi surface setup and low-energy antiferromagnetic fluctuations in high-Tc cuprates and other critical metals, which might be relevant to their non-Fermi-liquid behaviors. System sizes of [Formula: see text] ([Formula: see text]) are comfortably accessed, and the quantum critical scaling behaviors are revealed with unprecedented high precision.

View Article and Find Full Text PDF

Objective: To explore the biological effective markers, we investigated DNA strand breaks in peripheral lymphocytes from occupational population with broad ranges of soluble chromate exposure.

Methods: We conducted a cross-sectional study in the chromate exposed workers employed at a chromate factory in a district of Jinan, Shandong Province. The studied population contained 114 workers from different processes of the chromate plants, in addition, 30 farmers in the countryside about one hundred kilometers away from the factory, without exposure to chromate were matched with the exposed subjects by age, gender and smoking status being identified as a control group.

View Article and Find Full Text PDF