Publications by authors named "Zi-Heng Ling"

Correlated states have emerged in low-dimensional systems owing to enhanced Coulomb interactions. Elucidating these states requires atomic-scale characterization and delicate control capabilities. Herein, spectroscopic imaging-scanning tunneling microscopy was employed to investigate the correlated states residing in 1D electrons of the monolayer and bilayer MoSe mirror twin boundary (MTB).

View Article and Find Full Text PDF

Studies of single-spin objects are essential for designing emergent quantum states. We investigate a molecular magnet TbPc interacting with a superconducting Pb(111) substrate, which hosts unprecedented Yu-Shiba-Rusinov (YSR) subgap states, dubbed spin-orbital YSR states. Upon adsorption of the molecule on Pb, the degeneracy of its lowest unoccupied molecular orbitals (LUMO) is lifted, and the lower LUMO forms a radical spin via charge transfer.

View Article and Find Full Text PDF

The Mott state in 1T-TaS is predicted to host quantum spin liquids (QSLs). However, its insulating mechanism is controversial due to complications from interlayer coupling. Here, we study the charge transfer state in monolayer 1T-NbSe, an electronic analogue to TaS exempt from interlayer coupling, using spectroscopic imaging scanning tunneling microscopy and first-principles calculations.

View Article and Find Full Text PDF