Publications by authors named "Zi-Hang Zhu"

Objective: Long non-coding RNAs (lncRNAs) are closely associated with the pathogenesis of laryngeal squamous cell carcinoma (LSCC). This study aimed to investigate the roles of AC068768.1 in LSCC.

View Article and Find Full Text PDF

We report on an experimental simulation of the spin-1 Heisenberg model with composite bosons in a one-dimensional chain based on the two-component Bose-Hubbard model. Exploiting our site- and spin-resolved quantum gas microscope, we observed faster superexchange dynamics of the spin-1 system compared to its spin-1/2 counterpart, which is attributed to the enhancement effect of multi-bosons. We further probed the nonequilibrium spin dynamics driven by the superexchange and single-ion anisotropy terms, unveiling the linear expansion of the spin-spin correlations, which is limited by the Lieb-Robinson bound.

View Article and Find Full Text PDF

Ultracold atoms in optical lattices form a competitive candidate for quantum computation owing to the excellent coherence properties, the highly parallel operations over spins, and the ultralow entropy achieved in qubit arrays. For this, a massive number of parallel entangled atom pairs have been realized in superlattices. However, the more formidable challenge is to scale up and detect multipartite entanglement, the basic resource for quantum computation, due to the lack of manipulations over local atomic spins in retroreflected bichromatic superlattices.

View Article and Find Full Text PDF

Gauge theory and thermalization are both topics of essential importance for modern quantum science and technology. The recently realized atomic quantum simulator for lattice gauge theories provides a unique opportunity for studying thermalization in gauge theory, in which theoretical studies have shown that quantum thermalization can signal the quantum phase transition. Nevertheless, the experimental study remains a challenge to accurately determine the critical point and controllably explore the thermalization dynamics due to the lack of techniques for locally manipulating and detecting matter and gauge fields.

View Article and Find Full Text PDF

We present a compact and gain-enhanced microwave helical antenna for manipulating ultracold Rb atoms coherently. By replacing the reflecting plate with an enhancing cup, the voltage standing wave ratio is reduced by 0.5 in the frequency range of 6.

View Article and Find Full Text PDF