J Colloid Interface Sci
January 2025
Constructing amorphous/crystalline heterophase structure with high porosity is a promising strategy to effectively tailor the physicochemical properties of electrode materials and further improve the electrochemical performance of supercapacitors. Here, the porous C-doped NiO (C-NiO) with amorphous/crystalline heterophase grown on NF was prepared using NF as Ni source via a self-sacrificial template method. Calcining the self-sacrificial NiCO template at a suitable temperature (400 °C) was beneficial to the formation of porous heterophase structure with abundant cavities and cracks, resulting in high electrical conductivity and rich ion/electron-transport channels.
View Article and Find Full Text PDFA facile two-step hydrothermal approach with post-sulfurization treatment was put forward to construct the mixed transition metal sulfide (NiCoZnS) with a high electrochemical performance. The different morphologies of NiCoZnS materials were successfully fabricated by adjusted the Ni/Co molar ratio of the NiCoZn(OH)F precursor. Moreover, thephase transformation from the NiCoZn(OH)F phase to ZnCoS and NiCoSphases and lattice defects via the Sion-exchange were determined by x-ray diffractometer, transmission electron microscopy and x-ray photoelectron spectroscopy techniques, which improved electric conductivity and interfacial active sites of the NiCoZnS, and so promoted the reaction kinetics.
View Article and Find Full Text PDF