Publications by authors named "Zi-Chuan Yi"

We study theoretically the Josephson diode effect (JDE) when realized in a system composed of parallel-coupled double-quantum dots (DQDs) sandwiched between two semiconductor nanowires deposited on an s-wave superconductor surface. Due to the combined effects of proximity-induced superconductivity, strong Rashba spin-orbit interaction, and the Zeeman splitting inside the nanowires, a pair of Majorana bound states (MBSs) may possibly emerge at opposite ends of each nanowire. Different phase factors arising from the superconductor substrate can be generated in the coupling amplitudes between the DQDs and MBSs prepared at the left and right nanowires, and this will result in the Josephson current.

View Article and Find Full Text PDF

We study the electron tunneling (ET) and local Andreev reflection (AR) processes in a quantum dot (QD) coupled to the left and right ferromagnetic leads with noncollinear ferromagnetisms. In particular, we consider that the QD is also side-coupled to a nanowire hosting Majorana bound states (MBSs) at its ends. Our results show that when one mode of the MBSs is coupled simultaneously to both spin-up and spin-down electrons on the QD, the height of the central peak is different from that if the MBS is coupled to only one spin component electrons.

View Article and Find Full Text PDF

We investigate the behavior of the Josephson current in a system composed of a quantum dot (QD) sandwiched between two nanowires by using the nonequilibrium Green's function technique. We consider that the nanowires are in proximity to s-wave superconducror substrates, and Majorana bound states (MBSs) are induced at their ends. It is also assumed that the two nanowires are not aligned in the same orientation, but form a bent angle with respect to each other.

View Article and Find Full Text PDF