Given the threat to human health posed by the abuse of tetracycline (TC), the development of a portable, on-site methods for highly sensitive and rapid TC detection is crucial. In this work, we initially synthesized europium-doped silicon nanoparticles (SiNPs) through a facile one-pot microwave-assisted method. Due to its blue-red dual fluorescence emission (465 nm/621 nm), which was respectively attributed to the silicon nanoparticles and Eu, SiNPs were designed as a ratiometric fluorescent sensor for TC detection.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
August 2022
The proposition of ratiometric detection mode has demonstrated great superiority in improving analysis accuracy by forming self-calibration. Herein, the novel dual-reverse-signal ratiometric fluorescence detection for malachite green (MG) was first achieved based on synergistic effect of fluorescence resonance energy transfer (FRET) and inner filter effect (IFE). The ratiometric fluorescence probe (B-RCDs) was self-assembled via electrostatic attraction between blue-emission carbon dots (BCDs) and red-emission carbon dots (RCDs), followed with FRET effect from BCDs to RCDs and exhibited dual-emission at 450 nm and 627 nm.
View Article and Find Full Text PDFMolecularly imprinted polymers were commonly used for drug delivery. However, single-template molecularly imprinted polymers often fail to achieve both drug delivery and precise targeting. To address this issue, a dual-template molecularly imprinted polymer nanoparticle used for targeted diagnosis and drug delivery for pancreatic cancer BxPC-3 cells (FH-MIPNPs) was prepared.
View Article and Find Full Text PDF