Spectrochim Acta A Mol Biomol Spectrosc
January 2025
Hydrogen sulfide (HS) has a comprehensive contribution to the normal operation and stability of organisms and is also present in environmental water samples and food deterioration. Thus, it is exceedingly promising and significant to develop a highly sensitive detection technique for tracing HS. Inspired by this, we designed and synthesized a new fluorescent probe 2-[3-[2-[3-bromo-4-(2,4- dinitrobenzenesulfonate)] ethenyl]-5,5-dimethyl-2-cyclohexen-1-ylidene]propanedinitrile (SP-Br) for hydrosulfide ion detection by introducing bromine atom.
View Article and Find Full Text PDFPurpose: The aim of this study is to investigate the effect of double-tract reconstruction on short-term clinical outcome, quality of life and nutritional status of patients after proximal gastrectomy by comparing with esophagogastrostomy and total gastrectomy with Roux-en-Y reconstruction.
Methods: The clinical data of patients who underwent double tract reconstruction (DTR), esophagogastrostomy (EG), total gastrectomy with Roux-en-Y reconstruction (TG-RY) were retrospectively collected from May 2020 to May 2022. The clinical characteristics, short-term surgical outcomes, postoperative quality of life and nutritional status were compared among the three groups.
Background: The research on cysteine (Cys) determination is deemed as a hot topic, since it has been reported to be connected with various physiological processes and disease prediction. However, existing Cys-responding probes may expose some defects such as long reaction time, disappointing photostability, and suboptimal sensitivity. Under such a circumstance, our team has proposed an efficient fluorescent probe with novel sensing mechanism to perfectly cope with the above-mentioned drawbacks.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
July 2024
Realizing the accurate recognition and quantification of heavy metal ions is pivotal but challenging in the environmental, biological, and physiological science fields. In this work, orange fluorescence emitting quantum dots (OQDs) have been facilely synthesized by one-step method. The participation of silver ion (Ag) can evoke the unique aggregation-induced emission (AIE) of OQDs, resulting in prominent fluorescence enhancement, which is scarcely reported previously.
View Article and Find Full Text PDFWith the booming development of food manufacturing, developing ideal analytical tools to precisely quantify food additives is highly sought after in the food science field. Herein, a new series of quinoline-derived multifunctional fluorescent probes has been synthesized. Bearing double reactive sites, these compounds display fluorescence response toward both bisulfite (HSO) and hypochlorous acid (HClO).
View Article and Find Full Text PDFOwing to the predominance of dopamine (DA) in controlling mental health, planning an innovative method for DA detection with simplicity and high efficacy is conducive to the assessment of neurological disorders. Herein, an efficient fluorogenic tactic has been elaborated for ultrasensitive detection of DA with remarkably enhanced turn-on response. Utilizing a twisted intramolecular charge-transfer (TICT)-suppressing strategy, a highly emissive azocine derivative 11-hydroxy-2,3,6,7,11,12,13,14-octahydro-1,5,10-11,14a-methanoazocino[5',4':4,5]furo[2,3-]pyrido[3,2,1-]quinolin-10-one () is generated via a one-step reaction between DA and 8-hydroxyjulolidine.
View Article and Find Full Text PDFBisulfite (HSO) and sulfite (SO) are commonly employed in food preservatives and are also significant environmental pollutants. Thus, developing an effective method for detecting HSO/SO is crucial for food safety and environment monitoring. In this work, based on carbon dots (CDs) and zeolitic imidazolate framework-90 (ZIF-90), a composite probe (named CDs@ZIF-90) is constructed.
View Article and Find Full Text PDFRealizing the rapid and sensitive tracing of multiple analysis indicators using single molecular probe through structural designing is urgently desired for exploring novel multi-response chemosensors. Herein, a series of acrylonitrile-bridging organic small molecules have been rationally designed. Among these donor-π-acceptor (D-π-A) compounds with efficient aggregation-induced emission (AIE) characteristics, a unique derivative, 2-(1H-benzo[d]imidazole-2-yl)-3-(4-(methylthio)phenyl) acrylonitrile, named MZS, has been screened out for multifunctional utilizing.
View Article and Find Full Text PDFThiophenols (ArSHs) are widely used as popular flavoring ingredients for making daily dishes. Dissecting the ArSHs contents in common foodstuffs is meaningful in the field of food safety science. Herein, a novel small-molecule sensor 2-(1H-benzo[d]imidazol-2-yl)-3-(2-(2,4-dinitrophenoxy)-4-morpholinophenyl)acrylonitrile (NOSA) has been tailored.
View Article and Find Full Text PDFBisulfite (HSO) is used as a food additive for its antibacterial and antioxidant properties. However, excessive intake of HSO is harmful to humans. Here, for the first time, aldehyde-functionalized dual-emissive carbon dots (D-CDs) are synthesized in one-step for direct ratiometric sensing of HSO.
View Article and Find Full Text PDFHerein, a novel hemicyanine derivative (E)-3-(1,1-dimethyl-2-(4-(methylthio)styryl)-1H-benzo[e]indol-3-ium-3-yl)propane-1-sulfonate (BIS) has been reasonably designed. Compound BIS is long-wavelength emissive and water-soluble with a large Stokes shift. Intriguingly, probe BIS provides a dual-mode fluorescence response pattern for the sensing of bisulfite (HSO) and hypochlorous acid (HClO) with great limit of detections (3.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
September 2022
A new type of dye with advantages of high selectivity and sensitivity is formed by using the strategy of hybridization between the luminescent unit and recognition unit. Based on this strategy, we exploit a novel dye bonding the benzopyrylium salt as a luminescent unit and phenylboronate group as a response site, which is served as a fluorescent probe 1 for specific recognition of hydrogen peroxide in biological application. Probe 1 employs a unique recognition switch, phenylboronate unit, to"turn-on"a highly specific and rapid fluorescence response toward hydrogen peroxide combined with the 1,6-rearrangement elimination reaction strategy.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2022
Luminescent metal-organic frameworks (LMOFs) and their functional materials with unique characteristics can provide the basis for the construction of new analytical techniques, which can meet the continuous demand for various fields. In this work, guanosine monophosphate (GMP), terbium ion (Tb) and zeolitic imidazolate framework-8 (ZIF-8) are self-assembled to form a ZIF-8@GMP-Tb nanocomplex, which can be utilized as a ratiometric fluorescent probe to monitor alkaline phosphatase (ALP) activity. Specifically, with adding ALP, the fluorescence intensity at 547 nm (one of the characteristic emission peaks of Tb) obviously decreased.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2021
Esterase activity is often used as an index to evaluate the health status of cells and plays an important role in cell metabolism and apoptosis. Herein, we develop two fluorescent probes for visual biosensing of esterase activity and imaging in living cells. In vitro, after the introduction of esterase, enzymolysis destroys the ester bond of the probe, causing the fluorescent color of probe changes from yellow to red, thus realizing the visual strategy for determination of esterase activity, with high sensitivity and selectivity.
View Article and Find Full Text PDFPromoting the macroautophagy/autophagy-mediated degradation of specific proteins and organelles can potentially be utilized to induce apoptosis in cancer cells or sensitize tumor cells to therapy. To examine this concept, we enriched for autophagosomes from histone deacetylase inhibitor (HDACi)-sensitive U937 lymphoma cells and isogenic HDACi-resistant cells. Mass spectrometry on autophagosome-enriched fractions revealed that HDACi-resistant cells undergo elevated pexophagy, or autophagy of the peroxisome, an organelle that supports tumor growth.
View Article and Find Full Text PDF