Publications by authors named "Zi Wen Zhou"

As an efficient, sustainable, and environmentally friendly semiconductor material, covalent organic frameworks (COFs) can generate hydrogen peroxide (HO) by photocatalysis, attracting wide attention in recent years. Herein, the effects of hydroxyl, methoxyl, and vinyl groups of imide-linked two-dimensional (2D) COFs on the photocatalytic production of HO were studied theoretically and experimentally. The introduction of vinyl groups greatly promotes the photogenerated charge separation and migration of COFs, providing more oxygen adsorption sites, stronger proton affinity, and lower intermediate binding energy, which effectively facilitates the rapid conversion of oxygen to HO.

View Article and Find Full Text PDF

Activation of immunoglobulin E (IgE)-associated mast cells (MCs) triggers the onset of pro-inflammatory signals associated with type I allergic diseases. Although histone acetylation changes have been associated with inflammatory diseases, the impact of lysine-acetyltransferase (KAT) inhibitors on IgE-mediated MCs function is unclear. Potential anti-allergic effects of the KAT6A inhibitor WM-1119 on IgE-mediated MCs activation and allergic inflammation were examined in this study.

View Article and Find Full Text PDF

Due to signal shielding caused by building structures, conventional mature positioning technologies such as the Global Positioning System (GPS) are only suitable for outdoor navigation and detection. However, there are many scenarios that urgently require high-precision indoor positioning technologies, such as indoor wireless optical communications (OWCs), navigation in large buildings, and warehouse management. Here, we proposed a millimeter-precision indoor positioning technology based on metalens-integrated camera, which determines the position of the device through imaging of beacon LEDs.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on a new method for converting E-olefins to Z-alkenes using photocatalysis, specifically with hydroxyaromatic aldehyde as a sensitizer under blue light.
  • The process is quick and highly efficient, achieving a Z/E ratio of 92:8 in just 5 minutes, and can be scaled up successfully while showing reactivity towards various olefin derivatives.
  • This metal-free method is advantageous due to its efficiency, convenience, lack of by-products, and high selectivity, with insights into its underlying mechanism linked to the sensitizer's triplet energy.
View Article and Find Full Text PDF

Diabetic wounds tend to develop into nonhealing wounds associated with the complex inflammatory microenvironment of uncontrollable bacterial infection, reactive oxygen species (ROS) accumulation, and chronic hypoxia. Damaged blood vessels hinder metabolic circulation, aggravating hypoxia, and ROS accumulation and further exacerbating the diabetic wound microenvironment. However, existing treatments with a single functionality have difficulty healing complicated diabetic wounds.

View Article and Find Full Text PDF

Because of their ultra-light, ultra-thin, and flexible design, metalenses exhibit significant potential in the development of highly integrated cameras. However, the performances of metalens-integrated camera are constrained by their fixed architectures. Here we proposed a high-quality imaging method based on deep learning to overcome this constraint.

View Article and Find Full Text PDF

Study Objective: To assess the impact of preoperative infection with the contemporary strain of severe acute respiratory coronavirus 2 (SARS-CoV-2) on postoperative mortality, respiratory morbidity and extrapulmonary complications after elective, noncardiac surgery.

Design: An ambidirectional observational cohort study.

Setting: A tertiary and teaching hospital in Shanghai, China.

View Article and Find Full Text PDF

Background: House dust mites (HDMs), including (Der p) and (Der f) species, represent a major source of inhalant allergens that induce IgE-mediated anaphylactic reactions. HDM allergen identification is important to the diagnosis and treatment of allergic diseases. Here, we report the identification of a novel HDM allergen, which we suggest naming Der f 40, and its immunodominant IgE epitopes.

View Article and Find Full Text PDF

Formononetin (FNT) is a plant-derived isoflavone natural product with anti-inflammatory, antioxidant, and anti-allergic properties. We showed previously that FNT inhibits immunoglobulin E (IgE)-dependent mast cell (MC) activation, but the effect of FNT on IgE-independent MC activation is yet unknown. Our aim was to investigate the effects and possible mechanisms of action of FNT on IgE-independent MC activation and pseudoallergic inflammation.

View Article and Find Full Text PDF

Peroxidase (POD)-like nanozymes have been found to act as nanoreactors for the generation of reactive oxygen species (ROS) to resolve drug resistance in the tumor microenvironment (TME). Amplifying cellular oxidative stress is considered to be a drug-free strategy to efficiently induce apoptosis in tumor cells. However, the limited content of intracellular hydrogen peroxide (HO) extremely restricts the performance of POD-like nanozymes to amplify cellular oxidative stress.

View Article and Find Full Text PDF
Article Synopsis
  • Immunoglobulin (Ig)E triggers mast cell activation, leading to allergic reactions, and this study investigates how the isoflavone formononetin (FNT) impacts this process.
  • FNT reduces the release of key inflammatory substances like histamine and cytokines in stimulated mast cells and decreases signaling pathways that promote inflammation.
  • In mice, oral FNT administration lessens allergic reactions, suggesting that targeting the natural compound and specific proteases involved in IgE signaling could help manage allergy symptoms.
View Article and Find Full Text PDF

In order to maximize the retention of the photodynamic therapy (PDT) efficacy, while avoiding the dilemma of hypoxia and high reducing substances in tumor tissue, fluoropolymers were synthesized in a simple and effective methods. Fluorous effect with good oxygen carrying capacity was endowed by the fluorine-containing section in fluoropolymers and the perfluorodecalin (PFD) together, the reaction site with GSH was provided by the disulfide bond, which enhanced PDT efficiency through the sequential "AND" logic gate design. Two kind of fluorine-containing nanocarriers (M-Ce6 and E-Ce6) were obtained by solvent evaporation or ultrasound emulsification with PFD, respectively.

View Article and Find Full Text PDF

Background: Production of biodiesel from renewable sources such as inedible vegetable oils by enzymatic catalysis has been a hotspot but remains a challenge on the efficient use of an enzyme. COFs (Covalent Organic Frameworks) with large surface area and porosity can be applied as ideal support to avoid aggregation of lipase and methanol. However, the naturally low density limits its application.

View Article and Find Full Text PDF

The accuracy of genetic evaluations in different herds is affected by the degree of genetic connectedness among herds. In this study, we explored the application of high density SNP markers in the assessment of genetic connectedness by comparing the genetic connectedness based on pedigree data and genomic data. Six methods, including PEVD (prediction error variance of differences between estimated breeding values), PEVD (x), VED (variance of estimated difference between the herd effects), CD (generalized coefficient of determination), r (prediction error correlation) and CR (connectedness rating), were implemented to measure the genetic connectedness based on different relationship matrices (A, G, G, G and H).

View Article and Find Full Text PDF

In this study, an immobilization strategy for magnetic cross-linking enzyme aggregates of lipase B from (CALB) was developed and investigated. Magnetic particles were prepared by conventional co-precipitation. The magnetic nanoparticles were modified with 3-aminopropyltriethoxysilane (APTES) to obtain surface amino-functionalized magnetic nanoparticles (APTES⁻Fe₃O₄) as immobilization materials.

View Article and Find Full Text PDF