Given continuous developments in industrial and scientific research, the separation and analysis of complex systems with high sensitivity, throughput, and selectivity is facing new challenges. Chromatography plays an irreplaceable role in separation science and is widely applied in environmental monitoring, pharmaceutical analysis, and food safety. Owing to their outstanding advantages, such as high loading capacity, precise quantification, and good reproducibility, chromatographic separation techniques based on various retention mechanisms have been utilized to detect different analytes.
View Article and Find Full Text PDFGlutathione peroxidase 4 (GPx4) is the membrane peroxidase in mammals that is essential for protecting cells against oxidative damage and critical for ferroptosis. However, no live cell probe is currently available to specifically label GPx4. Herein, we report both inhibitory and noninhibitory fluorescent turn-on probes for specific labeling of GPx4 in live cells.
View Article and Find Full Text PDFCovalent organic frameworks (COFs) are two-dimensional or three-dimensional crystalline porous structures formed by the covalent bonding of organic monomers. As an emerging crystalline porous material, COFs have been widely used in various fields such as gas storage, catalysis, sensing, and drug delivery. In recent years, COFs have shown immense potential in analytical chemistry because of their low density, large surface area, and controllable structure.
View Article and Find Full Text PDFA novel and general strategy is developed to design selective artificial enzyme inhibitor based on nanoparticleenzyme inter actions and molecular imprinting. Due to the creation of specific binding cavities, the resulting artificial inhibitor has high inhibition efficiency for the target enzyme, and shows great target-selectivity over other enzymes of similar function and proteins of compaable mole cular weight.
View Article and Find Full Text PDFAn improved route to obtain ZnO nanotube arrays and its first application to headspace solid-phase microextraction (HSSPME) as an adsorptive coating were described. The ZnO nanotube arrays were synthesized by a two-step chemical process including the hydrothermal synthesis of ZnO nanorod arrays on the surface of silica fiber (SiO(2)) in the first step, and the formation of ZnO nanotubes by selectively etching in NH(3)·H(2)O solution in the second step. The influence of NH(3)·H(2)O concentration, etching time, reaction temperature, and aging time in the ZnO nanotubes formation process was investigated, and arrays of ZnO nanotube with tailored dimensions (250 nm external diameters, 70 nm wall thicknesses and 2 μm lengths) could be obtained by varying the conditions.
View Article and Find Full Text PDF