Publications by authors named "Zhyvoloup A"

Background: Ribosomal protein S6 kinase 1 (p70S6K1) is a member of the AGC family of serine/threonine kinases which plays a role in various cellular processes, including protein synthesis, cell growth, and survival. Dysregulation of p70S6K1, characterized by its overexpression and/or hyperactivation, has been implicated in numerous human pathologies, particularly in several types of cancer. Therefore, generating active, recombinant p70S6K1 is critical for investigating its role in cancer biology and for developing novel diagnostic or therapeutic approaches.

View Article and Find Full Text PDF

Aims/hypothesis: Apart from its fibrinolytic activity, the tissue plasminogen activator (tPA)/plasmin system has been reported to cleave the peptide amyloid beta, attenuating brain amyloid deposition in Alzheimer's disease. As aggregation of human islet amyloid polypeptide (hIAPP) is toxic to beta cells, we sought to determine whether activation of the fibrinolytic system can also reduce islet amyloid deposition and its cytotoxic effects, which are both observed in type 2 diabetes.

Methods: The expression of Plat (encoding tPA) and plasmin activity were measured in isolated islets from amyloid-prone hIAPP transgenic mice or non-transgenic control islets expressing non-amyloidogenic mouse islet amyloid polypeptide cultured in the absence or presence of the amyloid inhibitor Congo Red.

View Article and Find Full Text PDF

Ribosomal protein S6 kinases belong to a family of highly conserved enzymes in eukaryotes that regulate cell growth, proliferation, survival, and the stress response. It is well established that the activation and downstream signalling of p70S6Ks involve multiple phosphorylation events by key regulators of cell growth, survival, and energy metabolism. Here, we report for the first time the covalent modification of p70S6K1 by coenzyme A (CoA) in response to oxidative stress, which regulates its kinase activity.

View Article and Find Full Text PDF

Amylin is released by pancreatic beta-cells in response to a meal and its major soluble mature form (37 amino acid-peptide) produces its biological effects by activating amylin receptors. Amylin is derived from larger propeptides that are processed within the synthesizing beta-cell. There are suggestions that a partially processed form, pro-amylin(1-48) is also secreted.

View Article and Find Full Text PDF

The polypeptide hormone Amylin (also known as islet amyloid polypeptide) plays a role in regulation of glucose metabolism, but forms pancreatic islet amyloid deposits in type 2 diabetes. The process of islet amyloid formation contributes to β-cell dysfunction and the development of the disease. Amylin is produced as a pro-from and undergoes processing prior to secretion.

View Article and Find Full Text PDF

Amyloids are partially ordered, proteinaceous, β-sheet rich deposits that have been implicated in a wide range of diseases. An even larger set of proteins that do not normally form amyloid in vivo can be induced to do so in vitro. A growing number of structures of amyloid fibrils have been reported and a common feature is the presence of a tightly packed core region in which adjacent monomers pack together in extremely tight interfaces, often referred to as steric zippers.

View Article and Find Full Text PDF

Human islet amyloid polypeptide (hIAPP) plays a role in glucose regulation but forms pancreatic amyloid deposits in type 2 diabetes, and that process contributes to β-cell dysfunction. Not all species develop diabetes, and not all secrete an IAPP that is amyloidogenic under normal conditions, a perfect correlation currently exists between both. Studies of IAPPs from such organisms can provide clues about the high amyloidogenicity of hIAPP and can inform the design of soluble analogues of hIAPP.

View Article and Find Full Text PDF

Islet amyloid polypeptide (IAPP) is a 37-residue polypeptide hormone secreted by the pancreatic β-cells. IAPP plays a role in glycemic regulation, but in the pre-type-2 diabetic state, it aggregates to form an islet amyloid. The process of islet amyloid formation contributes to β-cell dysfunction and disease progression.

View Article and Find Full Text PDF

Among CD4 T cells, T helper 17 (Th17) cells are particularly susceptible to HIV-1 infection and are depleted from mucosal sites, which causes damage to the gut barrier, resulting in a microbial translocation-induced systemic inflammation, a hallmark of disease progression. Furthermore, a proportion of latently infected Th17 cells persist long term in the gastrointestinal lymphatic tract where a low-level HIV-1 transcription is observed. This residual viremia contributes to chronic immune activation.

View Article and Find Full Text PDF

Spores of Bacillus species have novel properties, which allow them to lie dormant for years and then germinate under favourable conditions. In the current work, the role of a key metabolic integrator, coenzyme A (CoA), in redox regulation of growing cells and during spore formation in Bacillus megaterium and Bacillus subtilis is studied. Exposing these growing cells to oxidising agents or carbon deprivation resulted in extensive covalent protein modification by CoA (termed protein CoAlation), through disulphide bond formation between the CoA thiol group and a protein cysteine.

View Article and Find Full Text PDF

The neuropancreatic polypeptide hormone amylin forms pancreatic islet amyloid in type-2 diabetes. Islet amyloid formation contributes to β-cell death in the disease and to the failure of islet transplants, but the features which influence amylin amyloidogenicity are not understood. We constructed an amino acid sequence alignment of 202 sequences of amylin and used the alignment to design consensus sequences of vertebrate amylins, mammalian amylins, and primate amylins.

View Article and Find Full Text PDF

The polypeptide hormone islet amyloid polypeptide (IAPP) forms islet amyloid in type 2 diabetes, a process which contributes to pancreatic β-cell dysfunction and death. Not all species form islet amyloid, and the ability to do so correlates with the primary sequence. Humans form islet amyloid, but baboon IAPP has not been studied.

View Article and Find Full Text PDF

Pancreatic amyloid formation by the polypeptide IAPP contributes to β-cell dysfunction in type 2 diabetes. There is a 1:1 correspondence between the ability of IAPP from different species to form amyloid and the susceptibility of the organism to develop diabetes. Rat IAPP is non-amyloidogenic and differs from human IAPP at six positions, including three proline replacements: A25P, S28P, and S29P.

View Article and Find Full Text PDF

Amyloid formation by amylin contributes to β-cell dysfunction in type 2 diabetes. The features that control the amyloidogenicity and toxicity of amylin are not understood. Not all species form islet amyloid, and its presence or absence correlates with the behavior of the polypeptide.

View Article and Find Full Text PDF

The polypeptide amylin is responsible for islet amyloid in type 2 diabetes, a process which contributes to β-cell death in the disease. The role of the N-terminal region of amylin in amyloid formation is relatively unexplored, although removal of the disulfide bridged loop between Cys-2 and Cys-7 accelerates amyloid formation. We examine the des Lys-1 variant of human amylin (h-amylin), a variant which is likely produced in vivo.

View Article and Find Full Text PDF

Aurora A kinase is a master mitotic regulator whose functions are controlled by several regulatory interactions and post-translational modifications. It is frequently dysregulated in cancer, making Aurora A inhibition a very attractive antitumor target. However, recently uncovered links between Aurora A, cellular metabolism and redox regulation are not well understood.

View Article and Find Full Text PDF

The development of inhibitors of islet amyloid formation is important as pancreatic amyloid deposition contributes to type-2 diabetes and islet transplant failure. The Alzheimer's Aβ peptide and human amylin (h-amylin), the polypeptide responsible for amyloid formation in type-2 diabetes, share common physio-chemical features and some inhibitors of Aβ also inhibit amyloid formation by h-amylin and vice versa. Thus, a popular and potentially useful strategy to find lead compounds for anti-amylin amyloid agents is to examine compounds that have effects on Aβ amyloid formation.

View Article and Find Full Text PDF

Dictyostelium discoideum (D. discoideum) is a simple eukaryote with a unique life cycle in which it differentiates from unicellular amoebae into a fruiting body upon starvation. Reactive oxygen species (ROS) have been associated with bacterial predation, as well as regulatory events during D.

View Article and Find Full Text PDF

In all living organisms, coenzyme A (CoA) is an essential cofactor with a unique design allowing it to function as an acyl group carrier and a carbonyl-activating group in diverse biochemical reactions. It is synthesized in a highly conserved process in prokaryotes and eukaryotes that requires pantothenic acid (vitamin B5), cysteine and ATP. CoA and its thioester derivatives are involved in major metabolic pathways, allosteric interactions and the regulation of gene expression.

View Article and Find Full Text PDF

HIV-1 integrates more frequently into transcribed genes, however the biological significance of HIV-1 integration targeting has remained elusive. Using a selective high-throughput chemical screen, we discovered that the cardiac glycoside digoxin inhibits wild-type HIV-1 infection more potently than HIV-1 bearing a single point mutation (N74D) in the capsid protein. We confirmed that digoxin repressed viral gene expression by targeting the cellular Na+/K+ ATPase, but this did not explain its selectivity.

View Article and Find Full Text PDF

Coenzyme A (CoA) is an obligatory cofactor in all branches of life. CoA and its derivatives are involved in major metabolic pathways, allosteric interactions and the regulation of gene expression. Abnormal biosynthesis and homeostasis of CoA and its derivatives have been associated with various human pathologies, including cancer, diabetes and neurodegeneration.

View Article and Find Full Text PDF

Latency allows HIV-1 to persist in long-lived cellular reservoirs, preventing virus eradication. We have previously shown that the heat shock protein 90 (Hsp90) is required for HIV-1 gene expression and mediates greater HIV-1 replication in conditions of hyperthermia. Here we report that specific inhibitors of Hsp90 such as 17-(N-allylamino)-17-demethoxygeldanamycin and AUY922 prevent HIV-1 reactivation in CD4+ T cells.

View Article and Find Full Text PDF

Coenzyme A synthase (CoAsy) is a bifunctional enzyme which facilitates the last two steps of Coenzyme A biogenesis in higher eukaryotes. Here we describe that CoAsy forms a complex with enhancer of mRNA-decapping protein 4 (EDC4), a central scaffold component of processing bodies. CoAsy/EDC4 complex formation is regulated by growth factors and is affected by cellular stresses.

View Article and Find Full Text PDF
Article Synopsis
  • PTEN is a crucial tumor suppressor often deleted or mutated in advanced cancers, but it also shows potential for treating type II diabetes and obesity.
  • Recent research identified several proteins that interact with PTEN, indicating its involvement in various signaling pathways beyond just tumor suppression.
  • A notable interaction with the fatty-acid-binding protein FABP4 suggests PTEN's role in regulating lipid metabolism and adipocyte differentiation, with binding affinity measured at around 2.8 microM.
View Article and Find Full Text PDF

The mTOR (mammalian target of rapamycin) promotes growth in response to nutrients and growth factors and is deregulated in numerous pathologies, including cancer. The mechanisms by which mTOR senses and regulates energy metabolism and cell growth are relatively well understood, whereas the molecular events underlining how it mediates survival and proliferation remain to be elucidated. Here, we describe the existence of the mTOR splicing isoform, TOR beta, which, in contrast to the full-length protein (mTOR alpha), has the potential to regulate the G(1) phase of the cell cycle and to stimulate cell proliferation.

View Article and Find Full Text PDF