Affected by both future anthropogenic emissions and climate change, future prediction of PM and its Oxidative Potential (OP) distribution is a significant challenge, especially in developing countries like China. To overcome this challenge, we estimated historical and future PM concentrations and associated OP using the Danish Eulerian Hemispheric Model (DEHM) system with meteorological input from WRF weather forecast model. Considering different future socio-economic pathways and emission scenario assumptions, we quantified how the contribution from various anthropogenic emission sectors will change under these scenarios.
View Article and Find Full Text PDFAtmospheric deposition is a major input of mercury (Hg) to aquatic and terrestrial ecosystems. To evaluate Hg pollution mitigation strategies for inland lakes, the two Great Lakes (Ontario and Erie) adjacent to New York State (NYS), and rural land areas of Upstate New York, the relative contributions to atmospheric Hg deposition from anthropogenic emission reductions and meteorological variations were investigated using a regional three-dimensional chemical transport model with detailed Hg and bromine chemistry (CMAQ-newHg-Br). Our simulations suggested that NYS in-state emissions and the Northeastern US emission reductions from 2005 to 2011 did not significantly alter Hg wet and dry deposition in all study areas when averaged over time and space.
View Article and Find Full Text PDF