Catalase (CAT) plays a crucial role in plant responses to environmental stresses and maintaining redox homeostasis. However, its putative heat lability might compromise its activity and function, thus restricting plant thermotolerance. Herein, we verified Arabidopsis CAT3 was of poor thermostability that was then engineered by fusion expression in .
View Article and Find Full Text PDFSheng Wu Gong Cheng Xue Bao
July 2023
Phenylalanine ammonia-lyase (PAL) is the key entry enzyme of plant phenylpropanoid pathway. It plays an important role in the biosynthesis of podophyllotoxin, an anti-tumor lignan that is currently produced from its main natural source (Royle) Ying. In this study, we cloned the gene encoding phenylalanine ammonia-lyase by RT-PCR from the root of .
View Article and Find Full Text PDFMethamphetamine (MA) is spread worldwide and is a highly addictive psychostimulant that can induce neurodegeneration and cognitive disorder, which lacks effective treatments. We and other researchers have found that the crucial member of Hsp70 chaperone machinery, DnaJ, is liable to be co-aggregated with aberrant proteins, which has been confirmed a risk factor to promote neurodegeneration. In the current study, we demonstrated that tailing with a hyper-acidic fusion partner, tua2, human DnaJB1 could resist the formation of toxic mutant Tau aggregates both in prokaryote and eukaryote models.
View Article and Find Full Text PDFBackground: Jatropha curcas is a promising alternative bio-energy resource. However, underrun limited its broad application in the industry. Luckily, TAW1 is a high-productivity promoting gene that increases the lateral branches by prolonging the identification of inflorescence meristems to generate more spikes and flowers.
View Article and Find Full Text PDFSelective markers are generally indispensable in plant genetic transformation, of which the frequently used are of antibiotic or herbicide resistance. However, the increasing concerns on transgenic biosafety have encouraged many new and safe selective markers emerging, with an eminent representative as phosphite (Phi) in combination to its dehydrogenase (PTDH, e.g.
View Article and Find Full Text PDFThe chaperone network plays an essential role in cellular protein homeostasis. However, some core components often coaggregate with misfolded proteins for sequestration and dysfunction, leading to abnormal cell proteostasis, aggregation-associated disorders, and poor solubility of overexpressed recombinant proteins. Among them, DnaJ or its ortholog, an obligate co-chaperone in the tripartite DnaK-DnaJ-GrpE system, is of more implications, probably due to its intrinsic propensity for aggregation.
View Article and Find Full Text PDFC-reactive protein (CRP) is widely used as a biomarker of inflammation. It plays important roles in innate immunity response as a member of pattern recognition receptors, by binding oxidation-specific epitopes including some intermediates of lipid oxidative chain reaction. The inferred antioxidative ability of CRP was ever demonstrated by only few in vitro evidences, and needs to be clarified especially in vivo.
View Article and Find Full Text PDFSheng Wu Gong Cheng Xue Bao
February 2019
Nowadays, available phosphorus (P) deficiency in soil and weed resistance to herbicides have emerged as two severe limiting factors for sustainable agriculture. Therefore, it is of urgent needs to improve plant absorption/utilization ability of the soil P, seek phosphate (Pi)-alternative P fertilizers, and develop new forms of weed control systems. Phosphite (Phi), as a P resource of relatively high amount only less than Pi in Earth, can be converted to utilizable Pi uniquely in some bacterial species by oxidization via its specific dehydrogenase (PTDH), but inhibits plant growth and development.
View Article and Find Full Text PDFMembrane-bound pyrophosphatases (PPases) are involved in the adaption of organisms to stress conditions, which was substantiated by numerous plant transgenic studies with H-PPase yet devoid of any correlated evidences for other two subfamilies, Na-PPase and Na,H-PPase. Herein, we demonstrate the gene cloning and functional evaluation of the membrane-bound PPase (CmPP) of the human gut microbe Clostridium methylpentosum. The CmPP gene encodes a single polypeptide of 699 amino acids that was predicted as a multi-spanning membrane and K-dependent Na,H-PPase.
View Article and Find Full Text PDFH(+)-pyrophosphatase (H(+)-PPase) is a primary pyrophosphate (PPi)-energized proton pump to generate electrochemical H(+) gradient for ATP production and substance translocations across membranes. It plays an important role in stress adaptation that was intensively substantiated by numerous transgenic plants overexpressing H(+)-PPases yet devoid of any correlated studies pointing to the elite energy plant, Jatropha curcas. Herein, we cloned the full length of J.
View Article and Find Full Text PDFThermostable fusion peptide partners are valuable in engineering thermostability in proteins. We evaluated the Arabidopsis counterpart (AtRAce) and an acidified derivative (mRAce) of the conserved carboxyl extension (RAce) of plant Rubisco activase (RCA) for their thermostabilizing properties in Escherichia coli and Saccharomyces cerevisiae using a protein fusion strategy. We used AtRAce and mRAce as fusion tails for the thermolabile protein RCA2 from Arabidopsis thaliana and Nicotiana tabacum.
View Article and Find Full Text PDFReactive oxygen species (ROS) in plants, arising from various environmental stresses, impair the thiol-contained proteins that are susceptible to irregular oxidative formation of disulfide bonds, which might be alleviated by a relatively specific modifier called protein disulfide isomerase (PDI). From our previous data of the transcriptome and digital gene expression of cold-hardened Jatropha curcas, a PDI gene was proposed to be cold-relevant. In this study, its full-length cDNA (JcPDI) was cloned, with the size of 1649 bp containing the entire open reading frame (ORF) of 1515 bp.
View Article and Find Full Text PDFCytosolic ascorbate peroxidase 1 (APX1) plays a crucial role in regulating the level of plant cellular reactive oxygen species and its thermolability is proposed to cause plant heat-susceptibility. Herein, several hyper-acidic fusion partners, such as the C-terminal peptide tails, were evaluated for their effects on the thermal stability and activity of APX1 from Jatropha curcas and Arabidopsis. The hyper-acidic fusion partners efficiently improved the thermostability and prevented thermal inactivation of APX1 in both plant species with an elevated heat tolerance of at least 2 °C.
View Article and Find Full Text PDFBackground: Jatropha curcas L., also called the Physic nut, is an oil-rich shrub with multiple uses, including biodiesel production, and is currently exploited as a renewable energy resource in many countries. Nevertheless, because of its origin from the tropical MidAmerican zone, J.
View Article and Find Full Text PDFNowadays, SUMO fusion system is important for recombinant protein production in Escherichia coli, yet a few aspects remain to be improved, including the efficacy for vector construction and protein solubility. In this study, we found the SUMO gene Smt3 (Sm) of Saccharomyces cerevisiae conferred an unexpected activity of constitutive prokaryotic promoter during its PCR cloning, and the gene coding regions of SUMOs in most species had a sigma70-dependent prokaryotic promoter embedded, through the prediction via the BPROM program developed by Softberry. By combining the characters of Sm promoter activity and the Stu I site (added at the 3'-terminal of Sm), and introducing a His-tag and a hyper-acidic solubility-enhancing tag, we further constructed a set of versatile vectors for gene cloning and expression on the basis of Sm'-LacZa fusion gene.
View Article and Find Full Text PDFProtein Expr Purif
November 2011
Preventing protein aggregation is crucial for various protein studies, and has a large potential for remedy of protein misfolding or aggregates-linked diseases. In this study, we demonstrated the hyper-acidic protein fusion partners, which were previously reported to enhance the soluble expression of aggregation-prone proteins, could also significantly prevent aggregation (or improve the solubility) of disease-associated and amyloid/fibril-forming polypeptides such as TEL-SAM and Aβ42 in Escherichia coli cells. Further and most importantly, the solubility of all poorly soluble target proteins examined was greatly elevated by their corresponding highly soluble hyper-acidic fusion cognates when they were co-expressed, in despite of a concomitant compromise of the cognates' solubility.
View Article and Find Full Text PDFHigh expression of recombinant proteins in Escherichia coli (E. coli) often leads to protein aggregation. One popular approach to address this problem is the use of fusion tags (or partners) that improve the solubility of the proteins in question.
View Article and Find Full Text PDFMaximization of the soluble protein expression in Escherichia coli (E. coli) via the fusion expression strategy is usually preferred for academic, industrial and pharmaceutical purposes. In this study, a set of distinct protein fusion partners were comparatively evaluated to promote the soluble expression of two target proteins including the bovine enterokinase largely prone to aggregation and the green fluorescent protein with moderate native solubility.
View Article and Find Full Text PDFSequences described as chloroplast DNA replication origins were analysed in vivo by creating deletion and insertion mutants via plastid transformation in tobacco. Deletion of the described oriA sequence, which is located within the intron of the trnI gene, resulted in heteroplastomic transformants, when the selection marker was inserted within the intron. Removal of the complete intron sequence together with the oriA sequence, however, yielded homoplastomic transformants of normal phenotype, in which wild-type signals were no longer detectable through Southern analysis, thus bringing the role of the described oriA sequence for plastome replication into question.
View Article and Find Full Text PDF