Publications by authors named "Zhuqiang Zhong"

Poly(3-hexylthiophene) (P3HT) has garnered significant attention as a novel hole transport material (HTM). Principally, its cost-effective synthesis, excellent hole conductivity, and stable film morphology make it one of the most promising HTMs for perovskite solar cells (PSCs). However, the efficiency of PSCs employing P3HT remains less than ideal, primarily due to the mismatch of energy levels and insufficient interface contact between P3HT and the perovskite film.

View Article and Find Full Text PDF

Physiological networks, as observed in the human organism, involve multi-component systems with feedback loops that contribute to self-regulation. Physiological phenomena accompanied by time-delay effects may lead to oscillatory and even chaotic dynamics in their behaviors. Analogous dynamics are found in semiconductor lasers subjected to delayed optical feedback, where the dynamics typically include a time-delay signature.

View Article and Find Full Text PDF

Chromatic dispersion-enhanced signal-signal beating interference (SSBI) considerably affects the performance of intensity-modulation and direct-detection (IM/DD) fiber transmission systems. For recovering optical fields from received double sideband signals after propagating through IM/DD transmission systems, Gerchberg-Saxton (G-S) iterative algorithms are promising, which, however, suffers slow convergence speeds and local optimization problems. In this paper, we propose a multi-constraint iterative algorithm (MCIA) to extend the Gerchberg-Saxton-based linearized detection.

View Article and Find Full Text PDF

A novel transmission technique-namely, a DFT-spread spectrally overlapped hybrid OFDM-digital filter multiple access (DFMA) PON based on intensity modulation and direct detection (IMDD)-is here proposed by employing the discrete Fourier transform (DFT)-spread technique in each optical network unit (ONU) and the optical line terminal (OLT). Detailed numerical simulations are carried out to identify optimal ONU transceiver parameters and explore their maximum achievable upstream transmission performances on the IMDD PON systems. The results show that the DFT-spread technique in the proposed PON is effective in enhancing the upstream transmission performance to its maximum potential, whilst still maintaining all of the salient features associated with previously reported PONs.

View Article and Find Full Text PDF

Chaos generation in a discrete-mode (DM) laser subject to optical feedback is experimentally explored. The results show that a DM laser with only optical feedback can produce flat broadband chaos under an optimized feedback ratio. The effect of the laser bias current on the bandwidth and flatness of chaos is also investigated.

View Article and Find Full Text PDF

Using two mutually coupled semiconductor lasers (MC-SLs) outputs as chaotic entropy sources, a scheme for generating Tbits/s ultra-fast physical random bit (PRB) is demonstrated and analyzed experimentally. Firstly, two entropy sources originating from two chaotic outputs of MC-SLs are obtained in parallel. Secondly, by adopting multiple optimized post-processing methods, two PRB streams with the generation rate of 0.

View Article and Find Full Text PDF

Polarization-resolved chaotic emission intensities from a vertical-cavity surface-emitting laser (VCSEL) subject to feedback from a fiber Bragg grating (FBG) are numerically investigated. Time-delay (TD) signatures of the feedback are examined through various means including self-correlations of intensity time-series of individual polarizations, cross-correlation of intensities time-series between both polarizations, and permutation entropies calculated for the individual polarizations. The results show that the TD signatures can be clearly suppressed by selecting suitable operation parameters such as the feedback strength, FBG bandwidth, and Bragg frequency.

View Article and Find Full Text PDF

A system framework is proposed and analyzed for generating polarization-resolved wideband unpredictability-enhanced chaotic signals based on a slave vertical-cavity surface-emitting laser (S-VCSEL) driven by an injected optical chaos signal from a master VCSEL (M-VCSEL) under optical feedback. After calculating the time series outputs from the M-VCSEL under optical feedback and the S-VCSEL under chaotic optical injection by using the spin-flip model (SFM), the unpredictability degree (UD) is evaluated by permutation entropy (PE), and the bandwidth of the polarization-resolved outputs from the M-VCSEL and S-VCSEL are numerically investigated. The results show that, under suitable parameters, both the bandwidth and UD of two polarization components (PCs) outputs from the S-VCSEL can be enhanced significantly compared with that of the driving chaotic signals output from the M-VCSEL.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines how a 1550 nm vertical-cavity surface-emitting laser (VCSEL) behaves when influenced by feedback from a fiber Bragg grating (FBG) that can vary its polarization, using the spin-flip model (SFM).
  • Key tools like the self-correlation function and permutation entropy function are employed to analyze the time-delay signature of chaotic behavior in this setup, revealing how the operating parameters affect this chaos.
  • The findings indicate that optimal choices in coupling coefficient and feedback rate can effectively reduce the chaos, leading to a less chaotic output compared to traditional VCSELs using variable-polarization mirrors or standard polarization-preserved FBGs.
View Article and Find Full Text PDF

A solitary monolithic integrated semiconductor laser (MISL) chip with a size of 780 micrometer is designed and fabricated for broadband chaos generation. Such a MISL chip consists of a DFB section, a phase section and an amplification section. Test results indicate that under suitable operation conditions, this laser chip can be driven into broadband chaos.

View Article and Find Full Text PDF