Exploration (Beijing)
June 2023
Analog storage through synaptic weights using conductance in resistive neuromorphic systems and devices inevitably generates harmful heat dissipation. This thermal issue not only limits the energy efficiency but also hampers the very-large-scale and highly complicated hardware integration as in the human brain. Here we demonstrate that the synaptic weights can be simulated by reconfigurable non-volatile capacitances of a ferroelectric-based memcapacitor with ultralow-power consumption.
View Article and Find Full Text PDFA neuromorphic visual system integrating optoelectronic synapses to perform the in-sensor computing is triggering a revolution due to the reduction of latency and energy consumption. Here it is demonstrated that the dwell time of photon-generated carriers in the space-charge region can be effectively extended by embedding a potential well on the shoulder of Schottky energy barrier. It permits the nonlinear interaction of photocurrents stimulated by spatiotemporal optical signals, which is necessary for in-sensor reservoir computing (RC).
View Article and Find Full Text PDF