Advancing membranes with enhanced solute-solute selectivity is essential for expanding membrane technology applications, yet it presents a notable challenge. Drawing inspiration from the unparalleled selectivity of biological systems, which benefit from the sophisticated spatial organization of functionalities, we posit that manipulating the arrangement of the membrane's building blocks, an aspect previously given limited attention, can address this challenge. We demonstrate that optimizing the face-to-face orientation of building blocks during the assembly of covalent-organic-framework (COF) membranes improves ion-π interactions with multivalent ions.
View Article and Find Full Text PDFEfficient energy conversion using ions as carriers necessitates membranes that sustain high permselectivity in high salinity conditions, which presents a significant challenge. This study addresses the issue by manipulating the linkages in covalent-organic-framework membranes, altering the distribution of electrostatic potentials and thereby influencing the short-range interactions between ions and membranes. We show that a charge-neutral covalent-organic-framework membrane with β-ketoenamine linkages achieves record permselectivity in high salinity environments.
View Article and Find Full Text PDFMembrane reactors are known for their efficiency and superior operability compared to traditional batch processes, but their limited diversity poses challenges in meeting various reaction requirements. Herein, we leverage the molecular tunability of covalent organic frameworks (COFs) to broaden their applicability in membrane reactors. Our COF membrane demonstrates an exceptional ability to achieve complete conversion in just 0.
View Article and Find Full Text PDFPer- and polyfluoroalkyl substances (PFASs), comprising over 9,000 persistent synthetic organic contaminants, are extensively found in the environment and pose significant risks to both human and ecological health. Among the strategies for addressing PFAS contamination, adsorption processes have proven to be cost-effective. Traditional sorbents such as ion-exchange resins and activated carbon have been found to exhibit low adsorption capacities and slow equilibration times.
View Article and Find Full Text PDFConspectusMembranes are pivotal in a myriad of energy production processes and modern separation techniques. They are essential in devices for energy generation, facilities for extracting energy elements, and plants for wastewater treatment, each of which hinges on effective ion separation. While biological ion channels show exceptional permeability and selectivity, designing synthetic membranes with defined pore architecture and chemistry on the (sub)nanometer scale has been challenging.
View Article and Find Full Text PDFThe evolution of porous membranes has revitalized their potential application in sustainable osmotic-energy conversion. However, the performance of multiporous membranes deviates significantly from the linear extrapolation of single-pore membranes, primarily due to the occurrence of ion-concentration polarization (ICP). This study proposes a robust strategy to overcome this challenge by incorporating photoelectric responsiveness into permselective membranes.
View Article and Find Full Text PDFAccess to sustainable energy is paramount in today's world, with a significant emphasis on solar and water-based energy sources. Herein, we develop photo-responsive ionic dye-sensitized covalent organic framework membranes. These innovative membranes are designed to significantly enhance selective ion transport by exploiting the intricate interplay between photons, electrons, and ions.
View Article and Find Full Text PDF