Non-point source pollution(NSP) poses a great threat to water ecosystem health. The quantitative estimation of spatial distribution characteristics and accurate identification of critical source areas(CSAs) of NSP are the basis for its efficient and accurate control. The export coefficient model(ECM) has been widely used to assess NSP, but this model should be improved because it ignores pollutant loss in transport processes.
View Article and Find Full Text PDFProc Math Phys Eng Sci
February 2022
Intelligent mobile sensors, such as uninhabited aerial or underwater vehicles, are becoming prevalent in environmental sensing and monitoring applications. These active sensing platforms operate in unsteady fluid flows, including windy urban environments, hurricanes and ocean currents. Often constrained in their actuation capabilities, the dynamics of these mobile sensors depend strongly on the background flow, making their deployment and control particularly challenging.
View Article and Find Full Text PDFNon-point source pollution has become an important factor affecting the aquatic ecological environment and human health, and the analysis of spatial-temporal variations in non-point source pollution risks is an important prerequisite for pollution control. Based on land-use and land-cover data from 1980 to 2020, the potential non-point source pollution index (PNPI) model was applied in the upper Beiyun River Basin using different weighting methods. The results showed that:① The potential risk of non-point source pollution is high in the southeast and low in the northwest of the basin.
View Article and Find Full Text PDF