Publications by authors named "Zhuoying Chen"

Histone lysine N-methyltransferase 2C (KMT2C) is involved in transcriptional regulation and DNA damage repair. Mutations in KMT2C have been implicated in the progression, metastasis, and drug resistance of multiple cancer types. However, the roles of KMT2C in the regulation of tumor prognosis, immune cell infiltration and the immune microenvironment in these multiple cancer types remain unclear.

View Article and Find Full Text PDF

The achievement of both efficiency and stability in perovskite solar cells (PSCs) remains a challenging and actively researched topic. In particular, among different environmental factors, ultraviolet (UV) photons play a pivotal role in contributing to device degradation. In this work, by harvesting simultaneously both the optical and the structural properties of bottom-up-synthesized colloidal carbon quantum dots (CQDs), a cost-effective means is provided to circumvent the UV-induced degradation in PSCs without scarification on their power conversion efficiencies (PCEs).

View Article and Find Full Text PDF

Several microRNAs (miRNAs) are expressed at lower levels in specific tumors, e.g., miR-let-7a in non-small cell lung cancer (NSCLC).

View Article and Find Full Text PDF

It has been reported that CDK8 plays a key role in acute myeloid leukaemia. Here, a total of 40 compounds were rational designed and synthesised based on the previous SAR. Among them, compound () showed the most potent inhibiting activity against CDK8 with an IC value of 39.

View Article and Find Full Text PDF

Copper-induced cell death, also known as cuproptosis, is distinct from other types of cell death such as apoptosis, necrosis, and ferroptosis. It can trigger the accumulation of lethal reactive oxygen species, leading to the onset and progression of aging. The significant increases in copper ion levels in the aging populations confirm a close relationship between copper homeostasis and vascular aging.

View Article and Find Full Text PDF
Article Synopsis
  • Allogeneic tissue products are prevalent in clinical treatments because they have a wider sourcing and cause less trauma to patients compared to using their own (autologous) tissues.
  • However, harmful substances can leach from the organic solvents used in these products into patients during treatment, posing health risks.
  • The study focuses on identifying and analyzing these leachable substances, establishing detection methods to ensure patient safety in the use of allogeneic products.
View Article and Find Full Text PDF

Synovial angiogenesis is essential for the development of rheumatoid arthritis (RA). Human vascular endothelial growth factor receptor 2 tyrosine kinase (VEGFR2) is a direct target gene that is notably elevated in RA synovium. Herein, we report the identification of indazole derivatives as a novel class of potent VEGFR2 inhibitors.

View Article and Find Full Text PDF

Background: Emerging studies indicated that circular RNA hsa_circ_ 0023404 and its target miR-217/MARK1 axis play a critical role in cancer progression such as non-small cell lung cancer and cervical cancer. However, the role of hsa_circ_0023404/miR-217/MARK1 involved in endometrial cancer (EC) was not investigated yet. The aim of this study is to investigate the functions of hsa_circ_0023404 in endometrial cancer (EC) and the potential molecular mechanism.

View Article and Find Full Text PDF

Recent attempts to improve solar cell performance by increasing their spectral absorption interval incorporate up-converting fluorescent nanocrystals on the structure. These nanocrystals absorb low energy light and emit higher energy photons that can then be captured by the solar cell active layer. However, this process is very inefficient and it needs to be enhanced by different strategies.

View Article and Find Full Text PDF

With the rapid development of my country's hemodialysis industry, the application of hemodialysis machines has become more and more extensive, but at the same time, the quality control technology of hemodialysis machines is not perfect. Especially for a wide range of leachable substances in dialyzers, there are few studies and detection methods. This study first briefly describes the development of hemodialyzers, and then expounds the common types of leachables, extraction methods, and chromatography and mass spectrometry conditions.

View Article and Find Full Text PDF

MicroRNA (miRNA/miR)-409-5p has been reported to be implicated in prostate and breast cancers; however, its functional role in ovarian cancer (OC) remains unclear. Therefore the aim of the present study was to investigate the clinical significance and biological function of miR-409-5p in OC. Here, reverse transcription-quantitative PCR analysis was performed to detect miR-409-5p expression in OC tissues and cell lines.

View Article and Find Full Text PDF

Osteoporosis is a bone metabolic disease characterized by reduced bone mass and deterioration of bone tissue microarchitecture, leading to enhanced skeletal fragility and susceptibility to fracture. Unbalanced bone remodeling is the primary pathogenetic factor of osteoporosis, in which osteoclast-mediated bone resorption exceeds osteoblast-mediated bone formation. Bisphosphonates and calcitonin are among the drugs commonly used to treat osteoporosis, in addition to the bone nutrients vitamin D and calcium supplements.

View Article and Find Full Text PDF

Osteopontin (OPN) is an important protein for mediating cell behaviour on biomaterials. However, the interactions between the chemical groups on the biomaterial surface and OPN still need to be further clarified, which has restricted the application of OPN in biomaterial functionalization. In the present study, we developed different self-assembled monolayers (SAMs) with specific chemical groups, including SAMs-OH, SAMs-OEG, SAMs-COOH, SAMs-NH, and SAMs-POH, to study the behavior of OPN on these SAMs.

View Article and Find Full Text PDF

Polypyrrole (PPy) is a conductive polymer and widely applied in different applications owing to its broadband absorption in the UV-visible, near-infrared (NIR), and short-wave-infrared (SWIR) spectrum, excellent conductivity, and strong photothermal effect. In this work, we explored for the first time the photothermal effect of PPy nanoparticles (PPy-NPs) in a photothermal-induced detector structure and developed a new type of air-stable hybrid PPy-NPs/Pt photodetector (PD) with NIR/SWIR sensitivity. By combining PPy-NPs with a platinum (Pt)-resistive pattern, we fabricated PPy-NPs/Pt PDs that are sensitive to illumination in the wavelength range from 800 to 2000 nm.

View Article and Find Full Text PDF

Microwave photoconductive switches, allowing an optical control on the magnitude and phase of the microwave signals to be transmitted, are important components for many optoelectronic applications. In recent years, there are significant demands to develop photoconductive switches functional in the short-wave-infrared spectrum window (e.g.

View Article and Find Full Text PDF

Considerable researches implicate that the circadian clock regulates the responsive rhythms of organs and sets the orderly aging process of cells indirectly. It influences an array of diverse biological process including intestinal flora, peripheral inflammatory responses, and redox homeostasis. People with sleep disoders and other kinds of circadian disruptions are prone to have vascular aging earlier.

View Article and Find Full Text PDF
Article Synopsis
  • Metal halide perovskites show significant potential for solar energy applications due to their high efficiency and ease of fabrication.
  • Removing excess lead iodide (PbI) from the perovskite layer can improve the performance and stability of solar cells, but the exact impact of this excess is still debated.
  • Treatment with specific organic salts, particularly iodide salts like MAI and FAI, significantly enhances solar cell efficiency and stability compared to samples with excess PbI, maintaining high power conversion efficiency under prolonged illumination.
View Article and Find Full Text PDF

The telecommunication wavelength of λ = 1.5 μm has been playing an important role in various fields. In particular, performing photodetection at this wavelength is challenging, demanding more performance stability and lower manufacturing cost.

View Article and Find Full Text PDF

Objective: To investigate the effects of Apatinib on the "stemness" of lung cancer cells in vivo and to explore its related mechanisms.

Methods: A xenograft model of lung cancer cells A549 was established in nude mice and randomized into a control group ( = 4) and an Apatinib group ( = 4). Tumor tissues were harvested after 2 weeks, and mRNA was extracted to detect changes in stemness-related genes (, , , , , , , , , and ) and Wnt/-catenin, Hedgehog, and Hippo signal pathways.

View Article and Find Full Text PDF

Organic-inorganic hybrid perovskite solar cells have attracted much attention due to their high power conversion efficiency (>25%) and low-cost fabrication. Yet, improvements are still needed for more stable and higher-performing solar cells. In this work, a series of TiO nanocolumn photonic structures have been intentionally fabricated on half of the compact TiO-coated fluorine-doped tin oxide substrate by glancing angle deposition with magnetron sputtering, a method particularly suitable for industrial applications due to its high reliability and reduced cost when coating large areas.

View Article and Find Full Text PDF

Photodetection in the short-wave infrared (SWIR) wavelength window represents one of the core technologies allowing for many applications. Most current photodetectors suffer from high cost due to the epitaxial growth requirements and the ecological issue due to the use of highly toxic heavy-metal elements. Toward alternative SWIR photodetection strategies, in this work, high-performance heavy-metal-free flexible photodetectors sensitive to λ = 1.

View Article and Find Full Text PDF

Short-wave infrared (SWIR) photodetectors, sensitive to the wavelength range between 1 and 3 μm, are essential components for various applications, which constantly demand devices with a lower cost, a higher responsivity and a faster response. In this work, a new hybrid device structure is presented for SWIR photodetection composing a coupling between solution-processed colloidal plasmonic gold (Au) NRs and a morphology-optimized resistive platinum (Pt) microwire. Pt microwires harvest efficiently the photothermal effect of Au NRs and in return generating a change of device resistance.

View Article and Find Full Text PDF

Perovskite-based solar cells are promising because of their rapidly improving efficiencies but suffer from instability issues. Recently, it has been claimed that one of the key contributors to the instability of perovskite solar cells is ion migration-induced electrode degradation, which can be avoided by incorporating inorganic hole-blocking layers (HBLs) in the device architecture. In this work, we investigate the operational environmental stability of methylammonium lead iodide perovskite solar cells that contain either an inorganic or organic HBL, with only the former effectively blocking ions from migrating to the metal electrode.

View Article and Find Full Text PDF

Fluorescence enhancement effects have many potential applications in the domain of biochemical sensors and optoelectronic devices. Here, the emission properties of up-converting nanocrystals near nanostructures that support surface plasmon resonances have been investigated. Gold nanodisks of various diameters were illuminated in the near-infrared (λ = 975 nm) and a single fluorescent nanocrystal glued at the end of an atomic force microscope tip was scanned around them.

View Article and Find Full Text PDF

In organic and hybrid photovoltaic devices, the asymmetry required for charge separation necessitates the use of a donor and an acceptor material, resulting in the formation of internal interfaces in the device active layer. While the core objective of these interfaces is to facilitate charge separation, bound states between electrons and holes may form across them, resulting in a loss mechanism that diminishes the performance of the solar cells. These interfacial transitions appear in organic systems as charge transfer (CT) states and as bound charge pairs (BCP) in hybrid systems.

View Article and Find Full Text PDF