Publications by authors named "Zhuoyin Lu"

Constructed wetlands (CWs) are a cost-effective and environmentally friendly wastewater treatment technology. The influent chemical oxygen demand (COD)/nitrogen (N) ratio (CNR) plays a crucial role in microbial activity and purification performance. However, the effects of CNR changes on microbial diversity, interactions, and assembly processes in CWs are not well understood.

View Article and Find Full Text PDF

Aerobic denitrification is the key process in the elimination of nitrogen from aquaculture wastewater, especially for wastewater with high dissolved oxygen and low carbon/nitrogen (C/N) ratio. However, a low C/N ratio, especially in low-temperature environments, restricts the activity of aerobic denitrifiers and decreases the nitrogen elimination efficiency. In this study, an iron-based multi-solid carbon source composite that immobilized aerobic denitrifying bacteria ZS1 (IMCSCP) was synthesized to treat aerobic (DO > 5 mg/L), low temperature (<15 °C) and low C/N ratio (C/N = 4) aquaculture wastewater.

View Article and Find Full Text PDF

To mitigate the serious environmental problems caused by aquaculture wastewater discharge, the development of improved aquaculture systems with more self-purification capacity and less environmental impact has become essential. A novel recirculating aquaculture system (RAS) with ecological ponds was introduced. However, the mechanism of how the ecological ponds decompose the nutrients from the residual feed and excrement of fish is still unclear.

View Article and Find Full Text PDF

The recirculating aquaculture system (RAS) has attracted much attention in China as a way to rapidly transform and upgrade aquaculture ponds to realize zero-emissions of pollutants in aquaculture tail water. Tail water purification ponds (TWPPs) play an important role in the treatment of aquaculture wastewater. However, until now, there have been few reports on the occurrence of antibiotics in RAS and the removal of antibiotics from the TWPPs of RAS.

View Article and Find Full Text PDF