ACS Appl Mater Interfaces
January 2025
It is essential for the industry to create an adsorbent that combines a high capacity with selectivity to achieve the effective separation of SF from gas mixtures. In this study, we prepared a cost-effective nickel-based metal-organic framework (MOF), Ni(BTC)(BPY), which features hydrogen-rich ultramicroporous channels specifically designed for separating SF/N gas mixtures. The findings from the adsorption experiments demonstrated that Ni(BTC)(BPY) achieved a remarkable SF adsorption capacity of 5.
View Article and Find Full Text PDFIn the past few years, binary colloidal crystals (BCCs) composed of both large and small particles have attracted considerable attention from the scientific community as an exciting alternative to single colloidal crystals (SCCs). In particular, more complex structures with diverse nanotopographies and desirable optical properties of BCCs can be obtained by various colloidal assembly methods, as compared to SCCs. Furthermore, high accuracy in crystal growth with controllable stoichiometries allows for a great deal of promising applications in the fields of both interfacial and material sciences.
View Article and Find Full Text PDF