Publications by authors named "Zhuoran Zhou"

Pyroptosis, a form of programmed cell death characterized by cell lysis and inflammation, has significant implications for disease treatment. Nanomaterials (NMs), with their unique physicochemical properties, can precisely modulate pyroptosis, offering novel and intelligent therapeutic strategies for cancer, infectious diseases, and chronic inflammatory conditions with targeted activation and reduced systemic toxicity. This review explores the mechanisms by which NMs regulate pyroptosis, comparing molecular and NM inducers, and examines the role of intrinsic properties such as size, shape, surface charge, and chemical composition in these processes.

View Article and Find Full Text PDF

A microneedle has been greatly recognized as one of the most promising devices for novel transdermal drug delivery system due to its capacity of piercing the protective stratum corneum with a minimally invasive and painless manner. During the past two decades, although numerous achievements have been made in the structure and material combination of microneedles, they mostly focus on the pharmacology and functionality of microneedles, and little is reported about how to design the shape of microneedles to reduce insertion force and especially improve penetration efficiency. Using the developed finite element method, we designed three-section microneedles (TSMN) with various sizes and evaluated their maximum insertion force, penetration efficiency, drug delivery amount and strength.

View Article and Find Full Text PDF