Understanding how water ligands regulate the conformational changes and functionality of the oxygen-evolving complex (OEC) in photosystem II (PSII) throughout the catalytic cycle of oxygen evolution remains a highly intriguing and unresolved challenge. In this study, we investigate the effect of water insertion (WI) on the redox state of the OEC by using the molecular dynamics (MD) and quantum mechanics/molecular mechanics (QM/MM) hybrid methods. We find that water binding significantly reduces the free energy change for proton-coupled electron transfer (PCET) from Mn to Y, underscoring the important regulatory role of water binding, which is essential for enabling the OEC redox-leveling mechanism along the catalytic cycle.
View Article and Find Full Text PDFWe describe the synthesis and characterization of a versatile platform for gold functionalization, based on self-assembled monolayers (SAMs) of distal-pyridine-functionalized N-heterocyclic carbenes (NHC) derived from bis(NHC) Au(I) complexes. The SAMs are characterized using polarization-modulation infrared reflectance-absorption spectroscopy, surface-enhanced Raman spectroscopy, and X-ray photoelectron spectroscopy. The binding mode is examined computationally using density functional theory, including calculations of vibrational spectra and direct comparisons to the experimental spectroscopic signatures of the monolayers.
View Article and Find Full Text PDFChlorophylls and bacteriochlorophylls are the primary pigments used by photosynthetic organisms for light harvesting, energy transfer, and electron transfer. Many molecular structures of (bacterio)chlorophyll-containing protein complexes are available, some of which contain mixtures of different (bacterio)chlorophyll types. Differentiating these, which sometimes are structurally similar, is challenging but is required for leveraging structural data to gain functional insight.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
February 2023
Anion exchange membranes (AEMs) have attracted significant interest for their applications in fuel cells and other electrochemical devices in recent years. Understanding water distributions and hydroxide transport mechanisms within AEMs is critical to improving their performance as concerns hydroxide conductivity. Recently, nanoconfined environments have been used to mimic AEM environments.
View Article and Find Full Text PDFImidazole is a promising anhydrous proton conductor with a high conductivity comparable to that of water at a similar temperature relative to its melting point. Previous theoretical studies of the mechanism of proton transport in imidazole have relied either on empirical models or on trajectories that have been too short to draw significant conclusions. Here, we present the results of multiple time-step molecular dynamics simulations of an excess proton in liquid imidazole reaching 1 ns in total simulation time.
View Article and Find Full Text PDFA range of techniques including physical property measurements, neutron scattering experiments, molecular dynamics, and classical molecular dynamics simulations are used to probe the structural, thermodynamic, and transport properties of a deep eutectic solvent comprised of a 1:2 molar ratio of choline chloride and ethylene glycol. This mixture, known as Ethaline, has many desirable properties for use in a range of applications, and therefore, understanding its liquid structure and transport properties is of interest. Simulation results are able to capture experimental densities, diffusivities, viscosities, and structure factors extremely well.
View Article and Find Full Text PDFWe study, in this paper, the physical properties of water confined between two parallel graphene plates with different slit widths to understand the effects of confinement on the water structure and how bulk properties are reached as the water layer thickens. It was found that the microscopic structures of the interfacial liquid layer close to graphene vary with the slit width. Water tends to locate at the center of the six-membered ring of graphene planes to form triangular patterns, as found by others.
View Article and Find Full Text PDFSubtle changes in protein sequences are able to alter ligand-protein interactions. Unraveling the mechanism of such phenomena is important for understanding ligand-protein interactions, including the DMXAA-STING interaction. DMXAA specifically binds to mouse STING instead of human STING.
View Article and Find Full Text PDF