X chromosome inactivation triggers a dramatic reprogramming of transcription and chromosome architecture. However, how the chromatin organization of inactive X chromosome is established de novo in vivo remains elusive. Here, we identified an Xist-separated megadomain structure (X-megadomains) on the inactive X chromosome in mouse extraembryonic lineages and extraembryonic endoderm (XEN) cell lines, and transiently in the embryonic lineages, before Dxz4-delineated megadomain formation at later stages in a strain-specific manner.
View Article and Find Full Text PDFZygotic genome activation (ZGA), the first transcription event following fertilization, kickstarts the embryonic program that takes over the control of early development from the maternal products. How ZGA occurs, especially in mammals, is poorly understood due to the limited amount of research materials. With the rapid development of single-cell and low-input technologies, remarkable progress made in the past decade has unveiled dramatic transitions of the epigenomes, transcriptomes, proteomes, and metabolomes associated with ZGA.
View Article and Find Full Text PDFBackground: The oocyte-to-embryo transition (OET) converts terminally differentiated gametes into a totipotent embryo and is critically controlled by maternal mRNAs and proteins, while the genome is silent until zygotic genome activation. How the transcriptome, translatome, and proteome are coordinated during this critical developmental window remains poorly understood.
Results: Utilizing a highly sensitive and quantitative mass spectrometry approach, we obtain high-quality proteome data spanning seven mouse stages, from full-grown oocyte (FGO) to blastocyst, using 100 oocytes/embryos at each stage.
Translational regulation plays a critical role during the oocyte-to-embryo transition (OET) and zygotic genome activation (ZGA). Here, we integrated ultra-low-input ribosome profiling (Ribo-lite) with messenger RNA sequencing to co-profile the translatome and transcriptome in human oocytes and early embryos. Comparison with mouse counterparts identified widespread differentially translated gene functioning in epigenetic reprogramming, transposon defense, and small RNA biogenesis, in part driven by species-specific regulatory elements in 3' untranslated regions.
View Article and Find Full Text PDFIn mammals, translational control plays critical roles during oocyte-to-embryo transition (OET) when transcription ceases. However, the underlying regulatory mechanisms remain challenging to study. Here, using low-input Ribo-seq (Ribo-lite), we investigated translational landscapes during OET using 30-150 mouse oocytes or embryos per stage.
View Article and Find Full Text PDFMitotic inheritance of the DNA methylome is a challenging task for the maintenance of cell identity. Whether DNA methylation pattern in different genomic contexts can all be faithfully maintained is an open question. A replication-coupled DNA methylation maintenance model was proposed decades ago, but some observations suggest that a replication-uncoupled maintenance mechanism exists.
View Article and Find Full Text PDFSynth Syst Biotechnol
September 2018
Due to the abuse of antibiotics, antibiotic residues can be detected in both natural environment and various industrial products, posing threat to the environment and human health. Here we describe the design and implementation of an engineered capable of degrading tetracycline (Tc)-one of the commonly used antibiotics once on humans and now on poultry, cattle and fisheries. A Tc-degrading enzyme, TetX, from the obligate anaerobe was cloned and recombinantly expressed in and fully characterized, including its and value.
View Article and Find Full Text PDF