Engagement of cell surface receptor tyrosine kinases by insulin and growth factors activates phosphatidylinositol 3-kinase (PI3K) and generates the second messenger, phosphatidylinositol 3,4,5-trisphosphate. This second messenger leads to the recruitment of 3-phosphoinositide-dependent protein kinase-1 (PDK1) to the proximal side of the plasma membrane, which results in the activation of AKT kinase. In addition, PDK1 can phosphorylate numerous other kinases, including p90RSK, a kinase downstream of mitogen-activated protein kinase (MAPK) that is important for cell proliferation and survival.
View Article and Find Full Text PDFAKT is a key serine/threonine kinase in the PTEN/PI3K/AKT pathway(1) and activationof AKT is often observed in human cancers. To explore the role of AKT in cell survival in different tumor cells, we tested 20 human tumor cell lines for response to knockdown of AKT by small interference RNA (siRNA) and/or a kinase-dead mutant AKT. siRNA-mediated knockdown of all three AKT isoforms in tumor cell lines led to a reduction of phosphorylation of AKT substrates.
View Article and Find Full Text PDFMost of the protein kinase inhibitors being developed are directed toward the adenosine triphosphate (ATP) binding site that is highly conserved in many kinases. A major issue with these inhibitors is the specificity for a given kinase. Structure determination of several kinases has shown that protein kinases adopt distinct conformations in their inactive state, in contrast to their strikingly similar conformations in their active states.
View Article and Find Full Text PDF