Publications by authors named "Zhuokun Han"

NaNbO(NN)-based lead-free materials are attracting widespread attention due to their environment-friendly and complex phase transitions, which can satisfy the miniaturization and integration for future electronic components. However, NN materials usually have large remanent polarization and obvious hysteresis, which are not conducive to energy storage. In this work, we investigated the effect of introducing CaTiO((1-)NaNbO-CaTiO) on the physical properties of NN.

View Article and Find Full Text PDF
Article Synopsis
  • P-type FeCoSb-based skutterudite thin films were created using advanced pulsed laser deposition, demonstrating excellent thermoelectric performance and flexibility for high-temperature applications.
  • The films achieved a power factor of over 100 μW m K and a ZT value nearing 0.6 at a temperature of 653 K, supported by optimizing the fabrication process and using appropriate doping.
  • After extensive bending tests, the films maintained stability, showing only a 6% change in resistivity, and the flexible device produced a power density of 135.7 µW cm under a 100 K temperature gradient, marking a significant advance in flexible thermoelectric technology.
View Article and Find Full Text PDF

Recently, certain ferroelectric tunnel junctions (FTJs) exhibit non-volatile modulations on photoresponse as well as tunneling electroresistance (TER) effects related to ferroelectric polarization states. From the opposite perspective, the corresponding polarization states can be read by detecting the levels of the photocurrent. In this study, we fabricate a novel amorphous selenium (a-Se)/PbZrTiO (PZT)/Nb-doped SrTiO (NSTO) heterojunction, which exhibits a high TER of 3 × 10.

View Article and Find Full Text PDF

Dual-polarity response photodetectors (PDs) take full advantage of the directivity of the photocurrent to identify optical information. The dual-polarity signal ratio, a key parameter that represents the equilibrium degree of responses to different lights, is proposed for the first time. The synchronous enhancement of dual-polarity photocurrents and the amelioration of the dual-polarity signal ratio are beneficial to the practical applications.

View Article and Find Full Text PDF