Blood-contact medical devices are indispensable for clinical interventions, yet their susceptibility to thrombosis and bacterial infections poses substantial risks to treatment efficacy and patient well-being. This study introduces a polysulfobetaine/alginate-Cu (SAC) zwitterionic hydrogel coating on polyurethane (PU) surfaces. This approach retains the superhydrophilic and antifouling nature of pSBMA while conferring the antibacterial effects of copper ions.
View Article and Find Full Text PDFThe development of anti-adhesion hydrogels for preventing postoperative adhesions is an ongoing challenge, particularly in achieving a balance between exceptional antifouling properties and effective in situ tissue retention. In this study, we propose a unique approach with the design of a single-component Janus zwitterionic hydrogel patch featuring a bionic microstructure. The Janus patches were prepared through free radical polymerization of sulfobetaine methacrylate with '-methylenebis(2-propenamide) as the cross-linker.
View Article and Find Full Text PDFHydrogels show eminent advantages in biomedical and pharmaceutical fields. However, their application as coating materials for biomedical devices is limited by several key challenges, such as lack of universality, weak mechanical strength, and low adhesion to the substrate. Here we report versatile and tough adhesion composite hydrogel paints (CHPs), which consist of zwitterionic copolymers and microgels, both with reactive groups.
View Article and Find Full Text PDFThe strong radioactivity of iodine compounds derived from nuclear power plant wastes has motivated the development of highly efficient adsorbents. Porous aromatic frameworks (PAFs) have attracted much attention due to their low density and diverse structure. In this work, an azo group containing PAF solid, denoted as LNU-58, was prepared through Suzuki polymerization of tris-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-phenyl)-amine and 3,5-dibromoazobenzene building monomers.
View Article and Find Full Text PDFPorous aromatic framework materials with high stability, sensitivity, and selectivity have great potential to provide new sensors for optoelectronic/fluorescent probe devices. In this work, a luminescent porous aromatic framework material (LNU-23) was synthesized via the palladium-catalyzed Suzuki cross-coupling reaction of tetrabromopyrene and 1,2-bisphenyldiborate pinacol ester. The resulting PAF solid exhibited strong fluorescence emission with a quantum yield of 18.
View Article and Find Full Text PDFDue to the frequent oil/organic solvent leakage, efficient oil/water separation has attracted extensive concern. However, conventional porous materials possess nonpolar building units, which reveal relatively weak affinity for polar organic molecules. Here, two different polarities of superhydrophobic porous aromatic frameworks (PAFs) were synthesized with respective orthoposition and paraposition C=O groups in the PAF linkers.
View Article and Find Full Text PDFZwitterionic polymers have shown promising results in non-fouling and preventing thrombosis. However, the lack of controlled surface coverage hinders their application for biomedical devices. Inspired by the natural biological surfaces, a facile zwitterionic microgel-based coating strategy is developed by the co-deposition of poly (sulfobetaine methacrylate-co-2-aminoethyl methacrylate) microgel (SAM), polydopamine (PDA), and sulfobetaine-modified polyethyleneimine (PES).
View Article and Find Full Text PDFEating vegetables with pesticide residues over a long period of time causes serious adverse effects on the human body, such as acute poisoning, chronic poisoning, and endocrine system interference. To achieve the goal of a healthy society, it is an urgent issue to find a simple and effective method to detect organic pesticides. In this work, two fluorescent porous organic polymers, LNU-45 and LNU-47 (abbreviation for Liaoning University), were prepared using π-conjugated dibromopyrene monomer and boronic acid compounds as building units through a Suzuki coupling reaction.
View Article and Find Full Text PDFPorous carbon nanofibers with unique hierarchical structures have great potential in many fields, including heterogeneous catalysis, optoelectronics, and sensing. However, several preparation issues, such as additional templates, complicated processes, and harsh conditions, seriously hamper their widespread use. Here, we control the Sonogashira coupling reaction of linear building monomers─1,4-dibromaphthalene and 1,4-ethylbenzene─at the molecular level.
View Article and Find Full Text PDFNitrogen-rich porous networks with additional polarity and basicity may serve as effective adsorbents for the electron pairing of iodine molecules. Herein a carbazole-functionalized porous aromatic framework (PAF) was synthesized through a Sonogashira-Hagihara cross-coupling polymerization of 1,3,5-triethynylbenzene and 2,7-dibromocarbazole building monomers. The resulting solid with a high nitrogen content incorporated the electron pairing effect into a π-conjugated nano-cavity, leading to an ultrahigh binding capability for iodine molecules.
View Article and Find Full Text PDFUltramicropores (size < 0.7 nm) are critically demanded to provide an efficient path for the penetration and transportation of electrolytes to achieve high-performance supercapacitors. Here, a self-sacrificial template approach is adopted, which introduces C8 alkyl chains with a kinetic diameter of 0.
View Article and Find Full Text PDFLaying hens suffer from osteoporosis during their laying period, which causes bone fragility and susceptibility to fracture. This study evaluated the changes of mechanical properties of their bones during the laying period (from 18 to 77 wk) by using nano-indentation, atomic force microscope, X-Ray diffraction, and Raman spectroscopy. Results indicated that the crystallite sizes of bioapatite in femur decreased significantly from 34.
View Article and Find Full Text PDFRadioiodine (I and I) emission from the nuclear waste stream has aroused enormous apprehension because of its quick diffusion and radiological contamination. Conventional porous adsorbents such as zeolites and carbon with rigid skeletons and constant pore volumes reveal a limited performance for reliable storage. Here, a series of soft porous aromatic frameworks (PAFs) with additional π-conjugated fragments is disclosed to serve as physicochemical stable media.
View Article and Find Full Text PDFA new mixed-phase (anatase/rutile) TiO with mesoporous structures and smaller crystal size (3-5 nm) was successfully synthesized by a facile sol-gel method at a lower calcination temperature (100 °C). Rhodamine B can be completely decomposed in the presence of the as-synthesized nanocomposite after only 60 minutes under visible light. Therefore it is believed to be a promising candidate for wastewater treatment.
View Article and Find Full Text PDFThe targeted synthesis of a series of novel charged porous aromatic frameworks (PAFs) is reported. The compounds PAF-23, PAF-24, and PAF-25 are built up by a tetrahedral building unit, lithium tetrakis(4-iodophenyl)borate (LTIPB), and different alkyne monomers as linkers by a Sonogashira-Hagihara coupling reaction. They possess excellent adsorption properties to organic molecules owing to their "breathing" dynamic frameworks.
View Article and Find Full Text PDFHere we present a new 3D microporous COF with a uniform pore size (0.64 nm). MCOF-1 exhibits high adsorption selectivity towards C3H8, C2H6 and C2H4 over CH4 owing to the pore size and preferential adsorption.
View Article and Find Full Text PDFA chiral cationic low-molecular-weight amphiphile, derived from L-alanine, was synthesized. Templated by the self-assemblies of the amphiphile, sol-gel reactions were carried out to control the morphologies and pore architectures of mesoporous silicas. The results reveal that the morphologies and pore architectures of mesoporous silicas are sensitive to the reaction conditions, such as temperature and the concentration of NaOH.
View Article and Find Full Text PDFAn "artificial frustule" was prepared through a single-templating approach, where the self-assembled architecture undergoes a transition from cocoons with pore channels parallel to the surface, to hollow spheres with perpendicular pore channels.
View Article and Find Full Text PDF