Materials (Basel)
November 2019
A nesting ubiquitiform (NU) approach was developed to characterize the mesostructural features of polymer-bonded explosives (PBXs), and then used to predicate some equivalent physical properties of PBXs, which can also be expected to be extended to other composites with complicated internal mesostructures. To verify the availability, two NU models for two kinds of PBX with different compositions are presented, which are PBX 9501 and LX-17, based on which, the equivalent thermal conductivities were calculated. Particularly, it is so encouraging that an analytical expression of the equivalent thermal conductivity was obtained only under a simply assumption of homogeneity.
View Article and Find Full Text PDFTo facilitate the pre-estimation and optimization of the prescription design of a multi-component polymer bonded explosive (PBX), a multicomponent mesoscopic reaction rate model (MC-DZK model) is developed to predicate preferably the influence of both the explosive components and the particle size of on the shock initiation. All the parameters in the model are determined directly by the parameters in the DZK model for each explosive component. Furthermore, for the multicomponent insensitive explosive PBXC10 (70% TATB, 25% HMX, and 5% Kel-F800 by weight) with different explosive particle sizes, both shock initiation experiments and corresponding numerical simulations are performed, and there is satisfactory agreement between the numerical results and the available experimental data.
View Article and Find Full Text PDFQuasi-static and dynamic compression experiments were performed to study the influence of liquid nitrile rubber (LNBR) on the mechanical properties of epoxy resin. The quasi-static experiments were conducted by an electronic universal machine under strain rates of 0.0001/s and 0.
View Article and Find Full Text PDF