Purpose: Both the arthroscopic Broström-Gould and Lasso-loop stitch techniques are commonly used to treat chronic lateral ankle instability (CLAI). The purpose of this study is to introduce an arthroscopic one-step outside-in Broström-Gould (AOBG) technique and compare the mid-term outcomes of the AOBG technique and Lasso-loop stitch technique.
Methods: All CLAI patients who underwent arthroscopic lateral ankle stabilization surgery in our department from 2018 to 2019 were retrospectively enrolled.
Manganese (Mn) toxicity is mainly caused by excessive Mn content in drinking water and occupational exposure. Moreover, overexposure to Mn can impair mental, cognitive, memory, and motor capacities. Although melatonin (Mel) can protect against Mn-induced neuronal damage and mitochondrial fragmentation, the underlying mechanism remains elusive.
View Article and Find Full Text PDFExcessive manganese (Mn) exposure can cause nerve damage and mitochondrial dysfunction, which may involve defects in mitochondrial dynamics. Resveratrol (RSV) exerts a wide range of beneficial effects via activation of sirtuin 1 (SIRT1) and thus may positively impact Mn-induced mitochondrial damage through the regulation of peroxisome proliferator-activated receptor-gamma coactivator 1-alpha (PGC-1α) by SIRT1. In this study, we investigated the molecular mechanisms by which RSV alleviates the nerve injury and mitochondrial fragmentation caused by Mn in C57 BL/6 mice.
View Article and Find Full Text PDFExposure to excess levels of manganese (Mn) leads to neurotoxicity. Increasing evidence demonstrates that oxidative stress and neuroinflammation are important pathological causes of neurotoxicity. Resveratrol (Rsv), a sirtuin-1 (SIRT1) activator, plays an important role in neuroprotection.
View Article and Find Full Text PDFChronic manganese (Mn) exposure is related to elevated risks of neurodegenerative diseases, and mitochondrial dysfunction is considered a critical pathophysiological feature of Mn neurotoxicity. Although previous research has demonstrated Mn-induced alpha-synuclein (α-Syn) overexpression, the role of α-Syn in mitochondrial dysfunction remains unclear. Here, we used Wistar rats and human neuroblastoma cells (SH-SY5Y cells) to elucidate the molecular mechanisms underlying how α-Syn overexpression induced by different doses of Mn (15, 30, and 60 mg/kg) results in mitochondrial dysfunction.
View Article and Find Full Text PDF