Publications by authors named "Zhuo Z"

Butterflies are highly sensitive to climate change, and , as an endangered butterfly species, is also affected by these changes. To enhance the conservation of and effectively plan its protected areas, it is crucial to understand the potential impacts of climate change on its distribution. This study utilized a MaxEnt model in combination with ArcGIS technology to predict the global potential suitable habitats of under current and future climate conditions, using the species' distribution data and relevant environmental variables.

View Article and Find Full Text PDF

Objective: Cell dysfunction and death induced by lung ischaemia-reperfusion injury (LIRI) are the main causes of death in transplant patients. Activation of the cGAS-STING-induced immune response and death plays a critical role in multiple organ injuries. However, no study has yet investigated the role of the cGAS-STING pathway in LIRI after lung transplantation.

View Article and Find Full Text PDF

-acetyltransferase 10 (NAT10) is a nucleolar acetyltransferase with an acetylation catalytic function and can bind various protein and RNA molecules. As the N4-acetylcytidine (ac4C) "writer" enzyme, NAT10 is reportedly involved in a variety of physiological and pathological activities. Currently, the NAT10-related molecular mechanisms in various cancers are not fully understood.

View Article and Find Full Text PDF

Complex internal stresses that appear in flexible thin-film electronic devices under long-term deformation operation are associated with incompatible mechanical properties of the multiple layers, which potentially cause intralayer fracture and separation. These defects may result in device instability, performance loss, and failure. Herein, a thermoplastic functional strategy is proposed for manufacturing high-performance stretchable semiconducting polymers with excellent strain-tolerance capacities for flexible electronic devices.

View Article and Find Full Text PDF

The influenza A virus evades the host innate immune response to establish infection by inhibiting RIG-I activation through its nonstructural protein 1 (NS1). Here, we reported that receptor-transporting protein 4 (RTP4), an interferon-stimulated gene (ISG), targets NS1 to inhibit influenza A virus infection. Depletion of RTP4 significantly increased influenza A virus multiplication, while NS1-deficient viruses were unaffected.

View Article and Find Full Text PDF

Functional plasticity has been demonstrated in multiple sclerosis (MS) studies. However, the intrinsic brain activity complexity alterations remain unclear. Here, using a coarse-graining time-series procedure algorithm, we obtained multiscale entropy (MSE) from a retrospective multi-centre dataset (208 relapsing-remitting MS patients and 228 healthy controls).

View Article and Find Full Text PDF

Programmed cell death-1 (PD-1) inhibitors and programmed cell death ligand 1 (PD-L1) inhibitors are considered effective alternatives for the primary treatment of recurrent metastatic cancers. However, they can induce various adverse events affecting multiple organ systems, potentially diminishing patients' quality of life, and even leading to treatment interruptions. Adverse events related to PD-1/PD-L1 inhibitors differ from those associated with CTLA-4 inhibitors and are more commonly observed in the treatment of solid tumors.

View Article and Find Full Text PDF

Fully π-conjugated polymers consisting of plane and rigid aromatic units present a fantastic optoelectronic property, a promising candidate for printed and flexible optoelectronic devices. However, obtaining high-performance conjugated polymers with an excellent intrinsically flexible and printable capacity is a great challenge due to their inherent coffee-ring effect and brittle properties. Here, we report an asymmetric substitution strategy to improve the printable and stretchable properties of deep-blue light-emitting conjugated polymers with a strong inter-aggregate capillary interaction for flexible printed polymer light-emitting diodes.

View Article and Find Full Text PDF

Manganese-based (Mn-based) layered oxides have emerged as competitive cathode materials for sodium-ion batteries (SIBs), primarily due to their high energy density, cost-effectiveness, and potential for mass production. However, these materials often suffer from irreversible oxygen redox reactions, significant phase transitions, and microcrack formation, which lead to considerable internal stress and degradation of electrochemical performance. This study introduces a high-entropy engineering strategy for P2-type Mn-based layered oxide cathodes (HE-NMCO), wherein a multi-ingredient cocktail effect strengthens the lattice framework by modulating the local environmental chemistry.

View Article and Find Full Text PDF

TNBC, the most aggressive form of breast cancer, lacks accurate and effective therapeutic targets. Immunotherapy presents a promising approach for addressing TNBC. Anxiety and depression are frequently concurrent symptoms in TNBC patients.

View Article and Find Full Text PDF

Anionic redox has emerged as a transformative paradigm for high-energy layered transition-metal (TM) oxide cathodes, but it is usually accompanied by the formation of anionic redox-mediated oxygen vacancies (OVs) due to irreversible oxygen release. Additionally, external factor-induced OVs (defined as intrinsic OVs) also play a pivotal role in the physicochemical properties of layered TM oxides. However, an in-depth understanding of the interplay between intrinsic and anionic redox-mediated OVs and the corresponding regulation mechanism of the dynamic evolution of OVs is still missing.

View Article and Find Full Text PDF

The sodium-sulfur (Na-S) batteries, with advantages such as high energy density, high specific capacity, and low cost, have attracted significant attention in the field of rechargeable batteries in recent years. However, their practical application still faces many challenges. In this study, we employ first-principles calculations to investigate the performance of a 2D carbon allotrope, thgraphene, as an anchoring material in Na-S batteries.

View Article and Find Full Text PDF
Article Synopsis
  • Lithium-rich layered oxides (LLOs) are promising for high-energy battery cathodes but suffer from voltage decay due to irreversible reactions at high voltages.
  • Researchers theoretically studied manganese-based LLO structures and found that ring formations can enable stable redox reactions, while cobalt disrupts this stability.
  • They developed cobalt-free concentration-gradient LLOs (CF-CG-LLOs), which showed excellent capacity retention over 100 cycles, a very low voltage decay of 0.15 mV/cycle, and a high Coulombic efficiency of 99.86%, indicating strong potential for improved battery performance.
View Article and Find Full Text PDF

Cobalt is an efficient catalyst for Fischer-Tropsch synthesis (FTS) of hydrocarbons from syngas (CO + H) with enhanced selectivity for long-chain hydrocarbons when promoted by Manganese. However, the molecular scale origin of the enhancement remains unclear. Here we present an experimental and theoretical study using model catalysts consisting of crystalline CoMnO nanoparticles and thin films, where Co and Mn are mixed at the sub-nm scale.

View Article and Find Full Text PDF

is the largest butterfly in China and is highly valued for its ornamental beauty. Due to being classified as a national second-class protected species in China, studying its spatial distribution is crucial for developing effective conservation measures. In this study, a total of 490 distribution points were obtained, and the potential distribution areas of the golden-sheathed were analyzed by using the maximum entropy model (MaxEnt) based on three different greenhouse gas emission scenarios, namely, SSP1-2.

View Article and Find Full Text PDF

(Hübner, 1808) is a significant global agricultural pest, particularly posing a major threat during the boll-forming stage of cotton. In recent years, the severity of its damage has increased markedly, and its population dynamics and biological characteristics may be profoundly affected by global climate change. This study conducted a systematic meta-analysis to evaluate the life history traits of under conditions of rising global temperatures, different photoperiods, and humidity levels.

View Article and Find Full Text PDF

Previous studies suggest that social learning in bumblebees can occur through second-order conditioning, with conspecifics functioning as first-order reinforcers. However, the behavioural mechanisms underlying bumblebees' acquisition of socially learned associations remain largely unexplored. Investigating these mechanisms requires detailed quantification and analysis of the observation process.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates how brain aging differs between healthy controls and patients with various neurological disorders, focusing on its clinical implications and using a retrospective analysis of MRI data.
  • - A total of 2,913 healthy individuals and 1,600 patients with conditions like multiple sclerosis and Alzheimer's were assessed by comparing their estimated brain age using advanced imaging techniques.
  • - Results showed that individuals with "accelerated" brain age tended to have higher white matter hyperintensities and lower brain volumes, with notable correlations between increased brain age gap and cognitive decline across all disorders examined.
View Article and Find Full Text PDF
Article Synopsis
  • The study presents the cryo-electron microscopy structure of the PML dimer, revealing key details about its composition and the significant folding events that facilitate dimerization.
  • Researchers identified a novel "octopus-like" mechanism for NB assembly, where helices from different PML dimers interact in an anti-parallel manner to form a larger membrane-less organelle.
View Article and Find Full Text PDF

Neuroblastoma (NB), a rare childhood cancer originating in nerve tissue. YTHDF3, a member of the YTH domain protein family, is involved in RNA m6A modification and cancer progression. Polymorphisms in YTHDF3 may influence its expression and biological function.

View Article and Find Full Text PDF

Physical blending of fully π-conjugated polymers (FπCPs) is an effective strategy to achieve intrinsically stretchable films for the fabrication of flexible optoelectronic devices, but easily causes phase separation, nonuniform morphology and uncontrollable photo-electronic processing. This may cause low efficiency, unstable and nonuniform emission, and poor color purity, which are undesirable for deep-blue flexible polymer light-emitting diodes (FPLEDs). Herein, a "Like Dissolves Like" design principle to prepare semiconductor fluid plasticizers (SFPs) is established and intrinsically stretchable FπCPs films via external plasticization for high-performance deep-blue FPLEDs are developed.

View Article and Find Full Text PDF

Background And Purpose: The underlying transcriptomic signatures driving brain functional alterations in MS and neuromyelitis optica spectrum disorder (NMOSD) are still unclear.

Materials And Methods: Regional fractional amplitude of low-frequency fluctuation (fALFF) values were obtained and compared among 209 patients with MS, 90 patients with antiaquaporin-4 antibody (AQP4)+ NMOSD, 49 with AQP4- NMOSD, and 228 healthy controls from a discovery cohort. We used partial least squares (PLS) regression to identify the gene transcriptomic signatures associated with disease-related fALFF alterations.

View Article and Find Full Text PDF
Article Synopsis
  • * Over half (57.22%) of the isolates were found to be multidrug resistant, and a significant resistance to ciprofloxacin (60.82%) was noted, indicating serious treatment challenges.
  • * The isolates were classified into three lineages with specific characteristics, particularly ST34-1 being more invasive due to certain virulence factors; this emphasizes the need for ongoing monitoring of these resistant strains to prevent outbreaks.
View Article and Find Full Text PDF

Understanding how doping influences physicochemical properties of ABO perovskite oxides is critical for tailoring their functionalities. In this study, SrFeCrO epitaxial thin films were used to examine the effects of Fe and Cr competition on structure and B-site cation oxidation states. The films exhibit a perovskite-like structure near the film/substrate interface, while a brownmillerite-like structure with horizontal oxygen vacancy channels predominates near the surface.

View Article and Find Full Text PDF