Publications by authors named "Zhuo Ying"

Herein, a supramolecular DNA nanodevice was formed via the rolling circle amplification (RCA) and hybridization chain reaction (HCR) cascade reaction on a tetrahedral DNA nanostructure (TDN) to achieve simultaneous sensitive detection and intracellular imaging of dual-miRNAs related to liver cancer. The supramolecular DNA nanodevice effectively addressed the limitations of low probe loading capacity in traditional TDN nanodevices by enriching plenty of signal probes around a single TDN, significantly enhancing the fluorescence signal. Impressively, the supramolecular DNA nanodevice with a TDN fulcrum and dense DNA structure imparted the nanodevice with strong rigidity, ensuring the stability of the signal probes to decrease aggregation quenching for further increasing the fluorescence response.

View Article and Find Full Text PDF

Utilizing the cGAS-STING pathway to combat immune evasion is one of the most promising strategies for enhancing cancer immunotherapy. However, current techniques for activating the cGAS-STING pathway often face a dilemma, mainly due to the balance between efficacy and safety. Here, we develop a uracil base lesion-gated dumbbell DNA nanodevice (UBLE) that allows on-demand activation and termination of the cGAS-STING pathway in tumor cells, thereby enhancing cancer immunotherapy.

View Article and Find Full Text PDF

Rapid and sensitive detection of DNA adenine methyltransferase (Dam) activity is crucial for both research and clinical applications. Herein, we utilize two types of spherical nucleic acids (SNAs) to specific response assemble into 3D space-confined DNA nanoaggregates that enable the rapid and sensitive detection of Dam activity. The SNAs feature 3D order DNA scaffolds that serve as cores for anchoring signal hairpin probes (S-HPs) and target hairpin probes (T-HPs).

View Article and Find Full Text PDF

Single nucleotide polymorphism (SNP) primarily refers to DNA sequence polymorphism caused by variations in a single nucleotide, which is closely associated with many diseases such as genetic disorders and tumors. However, trace DNA mutants typically exist in a large pool of wild-type DNA, making it challenging to establish accurate and sensitive approaches for SNP detection. Herein, we developed an advanced ligase chain reaction (LCR) strategy to output the circular DNA walker for signal amplification, which realized accuracy and sensitive SNP detection based on the electrochemiluminescent (ECL) platform.

View Article and Find Full Text PDF
Article Synopsis
  • The study analyzes the cost differences in managing hematologic adverse events (AEs) for the individualized starting dose (ISD) versus the fixed starting dose (FSD) of niraparib from a US payer perspective.
  • Data from a phase III trial provided AE occurrence rates, and costs were calculated based on 2020 adjustments from a healthcare database.
  • Results showed that managing AEs was significantly cheaper with ISD ($6744.93) compared to FSD ($12,987.71), suggesting ISD not only cuts costs but also improves patient safety.
View Article and Find Full Text PDF

Dynamic DNA nanodevices, particularly DNA walkers, have proven to be versatile tools for target recognition, signal conversion, and amplification in biosensing. However, their ability to detect low-abundance analytes in complex biological samples is often compromised by limited amplification depth and severe signal leakage. To address these challenges, we developed a simple yet highly efficient strategy to engineer a self-replicating bipedal DNAzyme (SEDY) walker for sensitive and selective electrochemiluminescence (ECL) bioanalysis.

View Article and Find Full Text PDF

Differential RNA expression is becoming increasingly valuable in evaluating tumor heterogeneity for a better understanding of malignant tumors and guiding personalized therapy. However, traditional techniques for analyzing cellular RNA are mainly focused on determining the absolute level of RNA, which may lead to inaccuracies in understanding tumor heterogeneity, primarily due to i) the subtle differences in certain RNA types that have similar total concentrations and ii) the existence of variations in RNA expression across different samples. Herein, a detachable DNA assembly module is proposed that is capable not only of quantifying the expression level of target RNA but also of innovatively evaluating its proportion within its RNA family population through a sequential assembly and disassembly route.

View Article and Find Full Text PDF

Accurate and reliable detection of uracil-DNA glycosylase (UDG) activity is crucial for clinical diagnosis and prognosis assessment. However, current techniques for accurately monitoring UDG activity still face significant challenges due to the single input or output signal modes. Here, we develop a sequentially activated-dumbbell DNA nanodevice (SEAD) that enables precise and reliable evaluation of UDG activity through primer exchange reactions (PER)-based orthogonal signal output.

View Article and Find Full Text PDF

Granzyme A (GzmA) secreted by natural killer (NK) cells has garnered considerable interest as a biomarker to evaluate the efficacy of cancer immunotherapy. However, current methodologies to selectively monitor the spatial distribution of GzmA in cancer cells during NK cell-targeted therapy are extremely challenging, primarily due to the existence of diverse cell populations, the low levels of GzmA expression, and the limited availability of GzmA probes. Herein we develop a multi-modular, structurally-ordered DNA nanodevice for evaluating NK cell-mediated cancer immunotherapy (MODERN), that permits spatioselective imaging of GzmA in cancer cells through GzmA-induced apurinic/apyrimidinic endonuclease 1 (APE1) inactivation.

View Article and Find Full Text PDF

Mixed-dimensional nanomaterials composed of one-dimensional (1D) and two-dimensional (2D) nanomaterials, such as graphene-silver nanowire (AgNW) composite sandwiched structures, are promising candidates as building blocks for multifunctional structures and materials. However, their mechanical behavior and failure mechanism have not yet been fully understood. In this work, we have performed integrated experimental, theoretical, and numerical studies to explore the performance and failure modes of graphene-AgNW composite under tensile and impact loading conditions.

View Article and Find Full Text PDF

Accurate monitoring of base excision repair (BER) activity in cancer cells is critical for advancing the comprehension of DNA repair processes, gaining insights into cancer development, and guiding treatment strategies. However, current assay techniques for assessing BER activity in cancer cells face challenges due to the heterogeneous origins and diversity of BER enzymes. In this work, we present a hihly relible riple loop-intrlocked DNA coec (GATED) that enables precise assessment of BER activity in cancer cells through signal amplification mediated by multienzyme orthogonal activation.

View Article and Find Full Text PDF
Article Synopsis
  • A patient with POEMS syndrome, which affects multiple parts of the body, had a big increase in a protein called VEGF while taking medicine for his condition.
  • The doctors noticed that his VEGF levels went up a lot, which usually means something is wrong, so they added another treatment.
  • They discovered later that he had the flu at the same time, which might have caused the increase in VEGF, showing that they need to be careful when checking how well the treatment is working during infections.
View Article and Find Full Text PDF

Precise and reliable monitoring of DNA adenine methyltransferase (Dam) activity is essential for disease diagnosis and biological analysis. However, existing techniques for detecting Dam activity often rely on specific DNA recognition probes that are susceptible to DNA degradation and exhibit limited target sensitivity and specificity. In this study, we designed and engineered a stable and dynamic DNA nanodevice called the ouble-lop interlcked DNA cicuit (DOOR) that enables the sensitive and selective monitoring of Dam activity in complex biological environments.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to assess the safety and tolerability of an individualized starting dose (ISD) of niraparib in patients with newly diagnosed advanced ovarian cancer who responded to platinum-based chemotherapy.
  • An analysis of treatment-emergent adverse events (TEAEs) revealed that common side effects occurred early, with hematologic TEAEs resolving in over 89% of patients within a median duration of about 2 weeks.
  • Overall, the niraparib ISD was found to be well tolerated, indicating the importance of close monitoring after starting treatment and helping set patient expectations regarding safety.
View Article and Find Full Text PDF

Traditional DNA walkers face enormous challenges due to limited biostability and reaction kinetics. Herein, we designed a self-driven close-looped DNAzyme walker (cl-DW) with high structural biostability and catalytic activity that enabled rapid electrochemiluminescence (ECL) detection of pesticide residue acetamiprid. Specifically, cl-DW exhibited increasing ability to resist nuclease degradation with a 570-fold longer half-degradation time than that of the single-stranded DNAzyme walker (ss-DW) due to the protected DNA terminal.

View Article and Find Full Text PDF

Apurinic/apyrimidinic endonuclease 1 (APE1), as a vital base excision repair enzyme, is essential for maintaining genomic integrity and stability, and its abnormal expression is closely associated with malignant tumors. Herein, we constructed an electrochemiluminescence (ECL) biosensor for detecting APE1 activity by combining nanoconfined ECL silver nanoclusters (Ag NCs) with X-shaped DNA recognizer-triggered cascade amplification. Specifically, the Ag NCs were prepared and confined in the glutaraldehyde-cross-linked chitosan hydrogel network using the one-pot method, resulting in a strong ECL response and exceptional stability in comparison with discrete Ag NCs.

View Article and Find Full Text PDF

The timely detection of underground natural gas (NG) leaks in pipeline transmission systems presents a promising opportunity for reducing the potential greenhouse gas (GHG) emission. However, existing techniques face notable limitations for prompt detection. This study explores the utility of Vegetation Indicators (VIs) to reflect vegetation health deterioration, thereby representing leak-induced stress.

View Article and Find Full Text PDF
Article Synopsis
  • * A random forest model analyzed data from 119 patients and achieved high diagnostic accuracy (87.5%), with key indicators like infection sites and platelet counts identified as significant predictors.
  • * The research suggests that this approach can improve the diagnosis of elderly sepsis and aid the development of precision medicine in infectious disease treatment.*
View Article and Find Full Text PDF

Background: Lung adenocarcinoma (LUAD) poses significant clinical challenges due to its inherent heterogeneity and variable response to treatment. Recent research has specifically focused on elucidating the role of Paraptosis-related genes (PRGs) in the progression of cancer and the prognosis of patients.

Methods: We conducted a comprehensive analysis of the differential expression of PRGs in LUAD.

View Article and Find Full Text PDF

Here we report for the first time the phenomenon of continuously color-tunable electrochemiluminescence (ECL) from individual gold nanoclusters (Au NCs) confined in a porous hydrogel matrix by adjusting the concentration of the co-reactant. Specifically, the hydrogel-confined Au NCs exhibit strong dual-color ECL in an aqueous solution with triethylamine (TEA) as a co-reactant, with a record-breaking quantum yield of 95%. Unlike previously reported Au NCs, the ECL origin of the hydrogel-confined Au NCs is related to both the Au(0) kernel and the Au(i)-S surface.

View Article and Find Full Text PDF

Despite the progress that has been made in diverse DNA-based nanodevices to in situ monitor the activity of the DNA repair enzymes in living cells, the significance of improving both the sensitivity and specificity has remained largely neglected and understudied. Herein, we propose a regulatable DNA nanodevice to specifically monitor the activity of DNA repair enzymes for early evaluation of cancer mediated by genomic instability. Concretely, an AND logic gate-regulated DNAzyme nanoflower was rationally designed by the self-assembly of the DNA duplex modified with both apurinic/apyrimidinic (AP) site and methyl lesion site.

View Article and Find Full Text PDF

Herein, pyrenecarboxaldehyde@graphene oxide (Pyc@GO) sheets with highly efficient electrochemiluminescence (ECL) as emitters were prepared by a noncovalent combination to develop a neoteric ECL biosensing platform for the ultrasensitive assessment of human apurinic/apyrimidinic endonuclease1 (APE1) activity. Impressively, the pyrenecarboxaldehyde (Pyc) molecules were able to form stable polar functional groups on the surface of GO sheets through the noncovalent π-π stacking mechanism to prevent intermolecular restacking and simultaneously generate Pyc@GO sheets. Compared with the tightly packed PAH nanocrystals, the Pyc@GO sheets significantly reduced internal filtering effects and diminished nonactivated emitters to enhance ECL intensity and achieve strong ECL emission.

View Article and Find Full Text PDF

The development of a highly accurate electrochemiluminescence (ECL) signal switch to avoid nonspecific stimulus responses is currently a significant and challenging task. Here, we constructed a universal signal switch utilizing a luminophore-quencher pair of mesostructured silica xerogel-confined polymer and gold nanoparticles (Au NPs) that can accurately detect low-abundance epigenetic markers in complex sample systems. Notably, the ECL polymer encapsulated in mesostructured silica xerogel acts as a luminophore, which demonstrated a highly specific dependence on the Au NPs-mediated energy transfer quenching.

View Article and Find Full Text PDF

DNA nanostructure provides powerful tools for DNA demethylase activity detection, but its stability has been significantly challenged. By virtue of circular DNA with resistance to exonuclease degradation, herein, the circular DNAzyme duplex with artificial methylated modification was constructed to identify the target and output the DNA activators to drive the CRISPR/Cas12a, constructing an "on-off-on" electrochemiluminescence (ECL) biosensor for monitoring the activity of the O-methylguanine-DNA methyltransferase (MGMT). Specifically, the circular DNAzyme duplex consisted of the chimeric RNA-DNA substrate ring with double activator sequences and two single-stranded DNAzymes, whose catalytic domains were premodified with the methyl groups.

View Article and Find Full Text PDF

Background: This study aimed to assess and compare procalcitonin (PCT) and C-reactive protein (CRP) levels between COVID-19 and non-COVID-19 sepsis patients. Additionally, we evaluated the diagnostic efficiency of PCT and CRP in distinguishing between Gram-positive (GP) and Gram-negative (GN) bacterial infections. Moreover, we explored the associations of PCT with specific pathogens in this context.

View Article and Find Full Text PDF