Publications by authors named "Zhuo Chang"

Active systems exhibit fascinating self-organized structures and rich motility patterns, yet the underlying mechanisms governing their emergence and characteristics remain elusive. Here, we develop a chiral self-propelled rod (CSPR) model with mechanical contact-induced quorum sensing to investigate the spatiotemporal dynamics of dense bacteria populations. Our findings show that the CSPR model showcases spontaneous nonequilibrium oscillatory clustering of active systems.

View Article and Find Full Text PDF

Duck viral hepatitis (DVH) is a common and serious acute infectious disease that has a significantly impact on the duck farming industry. Duck hepatitis A virus type 3 (DHAV-3) is the major causative agent of DVH in East Asia. Host factor indicators of resistance to DHAV-3 in Pekin ducks were investigated using resistant (Z7R) and susceptible (Z7S) duck lines.

View Article and Find Full Text PDF

Infertility is a worldwide reproductive health problem influenced by the embryo implantation efficiency. We previously revealed that dietary chenodeoxycholic acid (CDCA) positively influence the early embryo implantation. But how CDCA regulate embryo implantation is largely unexplored.

View Article and Find Full Text PDF

Understanding the viscoelastic properties of atherosclerotic plaques at rupture-prone scales is crucial for assessing their vulnerability. Here, we develop a Hybrid Hierarchical theory-Microrheology (HHM) approach, enabling the analysis of multiscale mechanical variations and distribution changes in regional tissue viscoelasticity within plaques across different spatial scales. We disclose a universal two-stage power-law rheology in plaques, characterized by distinct power-law exponents (α and α), which serve as mechanical indexes for plaque components and assessing mechanical gradients.

View Article and Find Full Text PDF

Studies of cell and tissue mechanics have shown that significant changes in cell and tissue mechanics during lesions and cancers are observed, which provides new mechanical markers for disease diagnosis based on machine learning. However, due to the lack of effective mechanic markers, only elastic modulus and iconographic features are currently used as markers, which greatly limits the application of cell and tissue mechanics in disease diagnosis. Here, we develop a liver pathological state classifier through a support vector machine method, based on high dimensional viscoelastic mechanical data.

View Article and Find Full Text PDF

The bone marrow (BM) niches are the complex microenvironments that surround cells, providing various external stimuli to regulate a range of haematopoietic stem cell (HSC) behaviours. Recently, it has been proposed that the fate decision of HSCs is often correlated with significantly altered biophysical signals of BM niches. To thoroughly elucidate the effect of mechanical microenvironments on cell fates, we constructed 2D and 3D cell culture hydrogels using polyacrylamide to replicate the mechanical properties of heterogeneous sub-niches, including the inherent rigidity of marrow adipose tissue (2 kPa), perivascular tissue (8 kPa) and endosteum region (35 kPa) in BM.

View Article and Find Full Text PDF
Article Synopsis
  • Cell mechanics are important for understanding how cells behave, how diseases progress, and how cancer develops.
  • Scientists created a new method to study how flexible and stretchy cells are, especially focusing on liver cells related to fibrosis.
  • Their research shows that different cell types have unique mechanical properties, which can help identify disease states and could lead to better diagnosis and treatment options.
View Article and Find Full Text PDF

Accurate diagnosis and treatment assessment of liver fibrosis face significant challenges, including inherent limitations in current techniques like sampling errors and inter-observer variability. Addressing this, our study introduces a novel machine learning (ML) framework, which integrates light gradient boosting machine and multivariate imputation by chained equations to enhance liver status assessment using biomechanical markers. Building upon our previously established multiscale mechanical characteristics in fibrotic and treated livers, this framework employs Gaussian Bayesian optimization for post-imputation, significantly improving classification performance.

View Article and Find Full Text PDF

The self-organization of stem cells (SCs) constitutes the fundamental basis of the development of biological organs and structures. SC-driven patterns are essential for tissue engineering, yet unguided SCs tend to form chaotic patterns, impeding progress in biomedical engineering. Here, we show that simple geometric constraints can be used as an effective mechanical modulation approach that promotes the development of controlled self-organization and pattern formation of SCs.

View Article and Find Full Text PDF

Sows suffer oxidative stress and inflammation induced by metabolic burden during late pregnancy, which negatively regulates reproductive and lactating performances. We previously found that L-malic acid (MA) alleviated oxidative stress and inflammation and improved reproductive performances in sows. However, the mechanism underlying the MA's positive effects remains unexplored.

View Article and Find Full Text PDF

Background: Machine learning is a potentially effective method for predicting the response to platinum-based treatment for ovarian cancer. However, the predictive performance of various machine learning methods and variables is still a matter of controversy and debate.

Objective: This study aims to systematically review relevant literature on the predictive value of machine learning for platinum-based chemotherapy responses in patients with ovarian cancer.

View Article and Find Full Text PDF
Article Synopsis
  • Depression affects about 3.8% of the global population and current treatments, mainly medication and psychological support, often have limited effectiveness and high relapse rates.
  • Stem cell therapy is being researched as a potential new approach for treating depression, showing promise in triggering mechanisms like neurotrophic factor stimulation and immune function modulation; however, much of this research is still in its early stages.
  • While stem cell therapy could repair nerve damage and reduce neurotoxicity in depression, there are significant challenges to overcome before it can be widely used in clinical practice.
View Article and Find Full Text PDF

Understanding liver tissue mechanics, particularly in the context of liver pathologies like fibrosis, cirrhosis, and carcinoma, holds pivotal significance for assessing disease severity and prognosis. Although the static mechanical properties of livers have been gradually studied, the intricacies of their dynamic mechanics remain enigmatic. Here, we characterize the dynamic creep responses of healthy, fibrotic, and mesenchymal stem cells (MSCs)-treated fibrotic lives.

View Article and Find Full Text PDF

The mechanical properties of soft tissues can often be strongly correlated with the progression of various diseases, such as myocardial infarction (MI). However, the dynamic mechanical properties of cardiac tissues during MI progression remain poorly understood. Herein, we investigate the rheological responses of cardiac tissues at different stages of MI (i.

View Article and Find Full Text PDF

Spinal cord injury (SCI), one of the most serious injuries of the central nervous system, causes physical functional dysfunction and even paralysis in millions of patients. As a matter of necessity, redressing the neuroleptic pathologic microenvironment to a neurotrophic microenvironment is essential in order to alleviate this dilemma and facilitate the recovery of the spinal cord. Herein, based on cell-sheet technology, two functional cell types─uninduced and neural-induced stem cells from human exfoliated deciduous teeth─were formed into a composite membrane that subsequently self-assembled to form a bioactive scaffold with a spinal-cord-like structure, called a spinal cord assembly (SCA).

View Article and Find Full Text PDF

Background: Deficient endometrial decidualization has been associated with URSA. However, the underlying mechanism is poorly understood. This study aimed to investigate the temporal cytokine changes and the involvement of CyclinD-CDK4/6 and CyclinE-CDK2 pathways in the regulation of the G1 phase of the cell cycle during decidualization in a murine model of URSA.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Polycystic ovary syndrome (PCOS) is a common and complex endocrine disorder that is also an important cause of infertility. Adverse psychological stress can aggravate the occurrence and development of PCOS. Bushen Jieyu Tiaochong Formula (BJTF), a prescription of Traditional Chinese Medicine (TCM), has been used in the treatment of PCOS and shown to be effective in reducing negative emotion.

View Article and Find Full Text PDF

Targeted and immunological therapy have revolutionized the malignancy treatment, but is suffering from the dose-limiting side effects and inadequate responsiveness. The emerging nanoscale infinite coordination polymers provide a feasible strategy for tumor targeting and immune sensitization. Herein, a "one-pot" self-assembled strategy based on dynamic combinatorial chemistry (DCC) principle is designed to construct a tumor-targeting metal-organic nanoparticle (MOICP) through a spontaneous co-assembling among three metal-organic coordination polymers tuned by a Wnt-inhibitor carnosic acid (CA).

View Article and Find Full Text PDF

Background: Primary adrenal insufficiency (PAI) is life-threatening, and a definitive aetiological diagnosis is essential for management and prognostication. We conducted this study to investigate the genetic aetiologies of PAI in South China and explore their clinical features.

Methods: Seventy children were enrolled in this cross-sectional study.

View Article and Find Full Text PDF

Infertility is a global reproductive disorder which is caused by a variety of complex diseases. Infertility affects the individual, family, and community through physical, psychological, social and economic consequences. The results from recent preclinical studies regarding stem cell-based therapies are promising.

View Article and Find Full Text PDF

Objective: To observe the effect of electroacupuncture (EA) combined with pill on clinical symptoms, levels of serum sex hormone and Th2 cytokines in patients of decreased ovarian reserve function (DOR) with liver-kidney deficiency, and to compare the efficacy between EA combined with pill and pill alone.

Methods: Sixty patients with DOR were randomly divided into an observation group (30 cases, 2 cases dropped off) and a control group (30 cases, 1 case dropped off). The patients in the control group were treated with pill, 1 pill each time, 3 times a day.

View Article and Find Full Text PDF

Background: Increasing evidence has found that the dysregulation of long non-coding RNAs (lncRNAs) may be important indicators in tumorigenesis. MYC-induced long non-coding RNA (MINCR) has been found to be related with some cancers, such as non-small cell lung cancer and gallbladder cancer. Besides, MINCR has potentially prognostic value for colon cancer (CC) patients' prognosis, yet its function and molecular mechanism in CC are not explored.

View Article and Find Full Text PDF

Growth differentiation factor 5 (GDF5) was reported to regulate brown adipogenesis; however, its effects on insulin sensitivity, full metabolic syndrome spectrum, and the thermogenesis in subcutaneous white adipose tissue (sWAT) have not been elucidated yet. We thus generated fatty acid-binding protein 4 (Fabp4)-GDF5 transgenic (TG) mice and showed that GDF5 TG mice developed a relative lean phenotype on a high-fat diet (HFD) and showed increased insulin sensitivity. Over expression of GDF5 in adipose tissues greatly promoted the thermogenic process in sWAT after cold or β3-agonist treatment.

View Article and Find Full Text PDF

Using the atomic force microscopy- (AFM-) PeakForce quantitative nanomechanical mapping (QNM) technique, we have previously shown that the adventitia of the human internal mammary artery (IMA), tested under dehydrated conditions, is altered in patients with a high degree of arterial stiffening. In this study, we explored the nanoscale elastic modulus of the tunica media of the IMA in hydrated and dehydrated conditions from the patients with low and high arterial stiffening, as assessed by carotid-femoral pulse wave velocity (PWV). In both hydrated and dehydrated conditions, the medial layer was significantly stiffer in the high PWV group.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session22sinugcl88ccnh59qonra1ev4eadapg): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once