Deep convolutional neural networks (CNNs) have been widely used for fundus image classification and have achieved very impressive performance. However, the explainability of CNNs is poor because of their black-box nature, which limits their application in clinical practice. In this paper, we propose a novel method to search for discriminative regions to increase the confidence of CNNs in the classification of features in specific category, thereby helping users understand which regions in an image are important for a CNN to make a particular prediction.
View Article and Find Full Text PDFNowadays, trajectory planning and control technology has been extensively utilized in industry, agriculture, service, construction, infrastructure inspection, military reconnaissance, disaster management, and other areas [...
View Article and Find Full Text PDFThis paper proposes a novel adaptive variable power sliding mode observer-based model predictive control (AVPSMO-MPC) method for the trajectory tracking of a Mecanum-wheeled mobile robot (MWMR) with external disturbances and model uncertainties. First, in the absence of disturbances and uncertainties, a model predictive controller that considers various physical constraints is designed based on the nominal dynamics model of the MWMR, which can transform the tracking problem into a constrained quadratic programming (QP) problem to solve the optimal control inputs online. Subsequently, to improve the anti-jamming ability of the MWMR, an AVPSMO is designed as a feedforward compensation controller to suppress the effects of external disturbances and model uncertainties during the actual motion of the MWMR, and the stability of the AVPSMO is proved via Lyapunov theory.
View Article and Find Full Text PDFPurpose: This study aims to estimate the regional choroidal thickness from color fundus images from convolutional neural networks in different network structures and task learning models.
Method: 1276 color fundus photos and their corresponding choroidal thickness values from healthy subjects were obtained from the Topcon DRI Triton optical coherence tomography machine. Initially, ten commonly used convolutional neural networks were deployed to identify the most accurate model, which was subsequently selected for further training.
The Euclidean distance error of calibration results cannot be calculated during the hand-eye calibration process of a manipulator because the true values of the hand-eye conversion matrix cannot be obtained. In this study, a new method for error analysis and algorithm optimization is presented. An error analysis of the method is carried out using a priori knowledge that the location of the augmented reality markers is fixed during the calibration process.
View Article and Find Full Text PDFQuadrotor unmanned aerial vehicles (UAVs) often encounter intricate environmental and dynamic limitations in real-world applications, underscoring the significance of proficient trajectory planning for ensuring both safety and efficiency during flights. To tackle this challenge, we introduce an innovative approach that harmonizes sophisticated environmental insights with the dynamic state of a UAV within a potential field framework. Our proposition entails a quadrotor trajectory planner grounded in a kinodynamic gene regulation network potential field.
View Article and Find Full Text PDFAutomated and accurate segmentation of retinal vessels in fundus images is an important step for screening and diagnosing various ophthalmologic diseases. However, many factors, including the variations of vessels in color, shape and size, make this task become an intricate challenge. One kind of the most popular methods for vessel segmentation is U-Net based methods.
View Article and Find Full Text PDFAutomatic and accurate estimation of choroidal thickness plays a very important role in a computer-aided system for eye diseases. One of the most common methods for automatic estimation of choroidal thickness is segmentation-based methods, in which the boundaries of the choroid are first detected from optical coherence tomography (OCT) images. The choroidal thickness is then computed based on the detected boundaries.
View Article and Find Full Text PDFIEEE Trans Med Imaging
February 2022
Recently, many methods based on hand-designed convolutional neural networks (CNNs) have achieved promising results in automatic retinal vessel segmentation. However, these CNNs remain constrained in capturing retinal vessels in complex fundus images. To improve their segmentation performance, these CNNs tend to have many parameters, which may lead to overfitting and high computational complexity.
View Article and Find Full Text PDFTransl Vis Sci Technol
January 2021
Purpose: This study implements and demonstrates a deep learning (DL) approach for screening referable horizontal strabismus based on primary gaze photographs using clinical assessments as a reference. The purpose of this study was to develop and evaluate deep learning algorithms that screen referable horizontal strabismus in children's primary gaze photographs.
Methods: DL algorithms were developed and trained using primary gaze photographs from two tertiary hospitals of children with primary horizontal strabismus who underwent surgery as well as orthotropic children who underwent routine refractive tests.
Med Biol Eng Comput
October 2020
Glaucoma is a chronic disease that threatens eye health and can cause permanent blindness. Since there is no cure for glaucoma, early screening and detection are crucial for the prevention of glaucoma. Therefore, a novel method for automatic glaucoma screening that combines clinical measurement features with image-based features is proposed in this paper.
View Article and Find Full Text PDFAutomatic crack detection from images is an important task that is adopted to ensure road safety and durability for Portland cement concrete (PCC) and asphalt concrete (AC) pavement. Pavement failure depends on a number of causes including water intrusion, stress from heavy loads, and all the climate effects. Generally, cracks are the first distress that arises on road surfaces and proper monitoring and maintenance to prevent cracks from spreading or forming is important.
View Article and Find Full Text PDFThe gate assignment problem (GAP) aims at assigning gates to aircraft considering operational efficiency of airport and satisfaction of passengers. Unlike the existing works, we model the GAP as a bi-objective constrained optimization problem. The total walking distance of passengers and the total robust cost of the gate assignment are the two objectives to be optimized, while satisfying the constraints regarding the limited number of flights assigned to apron, as well as three types of compatibility.
View Article and Find Full Text PDFPurpose: To develop a deep learning (DL) model for automated detection of glaucoma and to compare diagnostic capability against hand-craft features (HCFs) based on spectral domain optical coherence tomography (SD-OCT) peripapillary retinal nerve fiber layer (pRNFL) images.
Methods: A DL model with pre-trained convolutional neural network (CNN) based was trained using a retrospective training set of 1501 pRNFL OCT images, which included 690 images from 153 glaucoma patients and 811 images from 394 normal subjects. The DL model was further tested in an independent test set of 50 images from 50 glaucoma patients and 52 images from 52 normal subjects.
Active contours, or snakes, are widely applied on biomedical image segmentation. They are curves defined within an image domain that can move to object boundaries under the influence of internal forces and external forces, in which the internal forces are generally computed from curves themselves and external forces from image data. Designing external forces properly is a key point with active contour algorithms since the external forces play a leading role in the evolution of active contours.
View Article and Find Full Text PDFSensors (Basel)
August 2019
Phase-sensitive optical time domain reflectometer (Φ-OTDR) based distributed optical fiber sensing system has been widely used in many fields such as long range pipeline pre-warning, perimeter security and structure health monitoring. However, the lack of event recognition ability is always being the bottleneck of Φ-OTDR in field application. An event recognition method based on deep learning is proposed in this paper.
View Article and Find Full Text PDFMultiobjective evolutionary algorithms (MOEAs) have progressed significantly in recent decades, but most of them are designed to solve unconstrained multiobjective optimization problems. In fact, many real-world multiobjective problems contain a number of constraints. To promote research on constrained multiobjective optimization, we first propose a problem classification scheme with three primary types of difficulty, which reflect various types of challenges presented by real-world optimization problems, in order to characterize the constraint functions in constrained multiobjective optimization problems (CMOPs).
View Article and Find Full Text PDFIEEE Trans Image Process
December 2018
In this paper, a hierarchical image matting model is proposed to extract blood vessels from fundus images. More specifically, a hierarchical strategy is integrated into the image matting model for blood vessel segmentation. Normally the matting models require a user specified trimap, which separates the input image into three regions: the foreground, background and unknown regions.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
January 2019
Optical Coherence Tomography (OCT) is beco-ming one of the most important modalities for the noninvasive assessment of retinal eye diseases. As the number of acquired OCT volumes increases, automating the OCT image analysis is becoming increasingly relevant. In this paper, we propose a surrogate-assisted classification method to classify retinal OCT images automatically based on convolutional neural networks (CNNs).
View Article and Find Full Text PDFDecomposition-based multiobjective evolutionary algorithm has shown its advantage in addressing many-objective optimization problem (MaOP). To further improve its convergence on MaOPs and its diversity for MaOPs with irregular Pareto fronts (PFs, e.g.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
January 2018
Automated optic disk (OD) detection plays an important role in developing a computer aided system for eye diseases. In this paper, we propose an algorithm for the OD detection based on structured learning. A classifier model is trained based on structured learning.
View Article and Find Full Text PDFMultiobjective evolutionary algorithm based on decomposition (MOEA/D) decomposes a multiobjective optimization problem (MOP) into a number of scalar optimization subproblems and then solves them in parallel. In many MOEA/D variants, each subproblem is associated with one and only one solution. An underlying assumption is that each subproblem has a different Pareto-optimal solution, which may not be held, for irregular Pareto fronts (PFs), e.
View Article and Find Full Text PDFThis paper introduces an automatic bond graph design method based on genetic programming for the evolutionary design of micro-resonator. First, the system-level behavioral model is discussed, which based on genetic programming and bond graph. Then, the geometry parameters of components are automatically optimized, by using the genetic algorithm with constraints.
View Article and Find Full Text PDFThe mitochondrial expression of exogenous antibiotic resistance genes has not been demonstrated successfully to date, which has limited the development of antibiotic resistance genes as selectable markers for mitochondrial site-directed transformation in Chlamydomonas reinhardtii. In this work, the plasmid pBSLPNCB was constructed by inserting the gene ble of Streptoalloteichus hindustanus (Sh ble), encoding a small (14-kilodalton) protective protein into the site between TERMINVREP-Left repeats and the cob gene in a fragment of mitochondrial DNA (mtDNA) of C. reinhardtii.
View Article and Find Full Text PDFThe efficient expression of exogenous gene in mitochondria of photosynthetic organism has been an insurmountable problem. In this study, the pBsLPNCG was constructed by inserting the egfp gene into a site between TERMINVREP-Left repeats and the cob gene in a fragment of mitochondrial DNA of Chlamydomonas reinhardtii CC-124 and introduced into the mitochondria of respiratory deficient dum-1 mutation of C. reinhardtii CC-2654.
View Article and Find Full Text PDF