Publications by authors named "Zhukov S"

Introduction: Small membrane particles called extracellular vesicles (EVs) transport biologically active cargo between cells, providing intercellular communication. The clinical application of EVs is limited due to the lack of scalable and cost-effective approaches for their production and purification, as well as effective loading strategies.

Methods: Here we used EV mimetics produced by cell treatment with the actin-destabilizing agent cytochalasin B as an alternative to EVs for the delivery of therapeutic nucleic acids.

View Article and Find Full Text PDF
Article Synopsis
  • A search for dark matter candidates in the mass range of 65 to 1021 keV was conducted using data from the GERDA experiment, focusing on energy depositions without detecting any significant signals above background noise.
  • The study established stringent exclusion limits on dark photon and axion-like particle interactions with electrons, with specific constraints noted at a 150 keV mass level.
  • Additional investigations into the decay rates of nucleons and electrons yielded lower lifetime limits for neutron, proton, and electron decay events at a 90% confidence interval.
View Article and Find Full Text PDF

Currently, the CRISPR-Cas9 system serves as a prevalent tool for genome editing and gene expression regulation. Its therapeutic application is limited by off-target effects that can affect genomic integrity through nonspecific, undesirable changes in the genome. Various strategies have been explored to mitigate the off-target effects.

View Article and Find Full Text PDF

Numerous types of oligonucleotide modifications have been developed since automated synthesis of DNA/RNA became a common instrument in the creation of synthetic oligonucleotides. Despite the growing number of types of oligonucleotide modifications under development, only a few of them and, moreover, their combinations have been studied widely enough in terms of their influence on the properties of corresponding NA constructions. In the present study, a number of oligonucleotides with combinations of 3'-end lipophilic (a single cholesteryl or a pair of dodecyl residues) and phosphate backbone modifications were synthesized.

View Article and Find Full Text PDF

We present the measurement of the two-neutrino double-β decay rate of ^{76}Ge performed with the GERDA Phase II experiment. With a subset of the entire GERDA exposure, 11.8 kg yr, the half-life of the process has been determined: T_{1/2}^{2ν}=(2.

View Article and Find Full Text PDF

Lipophilic oligonucleotide conjugates represent a powerful tool for nucleic acid cellular delivery, and many methods for their synthesis have been developed over the past few decades. In the present study, a number of chemical approaches for the synthesis of different fork- and comb-like dodecyl-containing oligonucleotide structures were performed, including use of non-nucleotide units and different types of phosphate modifications such as alkyl phosphoramidate, phosphoryl guanidine, and triazinyl phosphoramidate. The influence of the number of introduced lipophilic residues, their mutual arrangement, and the type of formed modification backbone on cell penetration was evaluated.

View Article and Find Full Text PDF

Dynamicallyprogrammable metasurfaces capable of manipulating terahertz (THz) wavefronts in various manners depending on external controls are highly desired for next-generation wireless communication systems and new tools for THz diagnostics. Such metasurfaces may utilize the insulator-to-metal transition in , which can be induced both electrically and optically. Optical control is especially convenient for individual addressing to each meta-atom, but it is hampered by the high optical switching threshold of .

View Article and Find Full Text PDF

We search for tri-nucleon decays of Ge in the dataset from the GERmanium Detector Array (GERDA) experiment. Decays that populate excited levels of the daughter nucleus above the threshold for particle emission lead to disintegration and are not considered. The ppp-, ppn-, and pnn-decays lead to Cu, Zn, and Ga nuclei, respectively.

View Article and Find Full Text PDF

Structural or crystal asymmetry is a necessary condition for the emergence of zero-bias photocurrent in light detectors. Structural asymmetry has been typically achieved via p-n doping, which is a technologically complex process. Here, we propose an alternative approach to achieve zero-bias photocurrent in two-dimensional (2D) material flakes exploiting the geometrical nonequivalence of source and drain contacts.

View Article and Find Full Text PDF

The ability to detect liquid argon scintillation light from within a densely packed high-purity germanium detector array allowed the Gerda experiment to reach an exceptionally low background rate in the search for neutrinoless double beta decay of Ge. Proper modeling of the light propagation throughout the experimental setup, from any origin in the liquid argon volume to its eventual detection by the novel light read-out system, provides insight into the rejection capability and is a necessary ingredient to obtain robust background predictions. In this paper, we present a model of the Gerda liquid argon veto, as obtained by Monte Carlo simulations and constrained by calibration data, and highlight its application for background decomposition.

View Article and Find Full Text PDF

Graphene shows strong promise for the detection of terahertz (THz) radiation due to its high carrier mobility, compatibility with on-chip waveguides and transistors, and small heat capacitance. At the same time, weak reaction of graphene's physical properties on the detected radiation can be traced down to the absence of a band gap. Here, we study the effect of electrically induced band gap on THz detection in graphene bilayer with split-gate p-n junction.

View Article and Find Full Text PDF

Eumelanin, the human skin pigment, is a poly-indolequinone material possessing a unique combination of physical and chemical properties. For numerous applications, the conductivity of eumelanin is of paramount importance. However, its hydration dependent conductivity is not well studied using transport-relaxation methods.

View Article and Find Full Text PDF

Photoconductivity of novel materials is the key property of interest for design of photodetectors, optical modulators, and switches. Despite the photoconductivity of most novel 2d materials having been studied both theoretically and experimentally, the same is not true for 2d p-n junctions that are necessary blocks of most electronic devices. Here, we study the sub-terahertz photocoductivity of gapped bilayer graphene with electrically induced p-n junctions.

View Article and Find Full Text PDF

The GERmanium Detector Array (Gerda) collaboration searched for neutrinoless double- decay in Ge using isotopically enriched high purity germanium detectors at the Laboratori Nazionali del Gran Sasso of INFN. After Phase I (2011-2013), the experiment benefited from several upgrades, including an additional active veto based on LAr instrumentation and a significant increase of mass by point-contact germanium detectors that improved the half-life sensitivity of Phase II (2015-2019) by an order of magnitude. At the core of the background mitigation strategy, the analysis of the time profile of individual pulses provides a powerful topological discrimination of signal-like and background-like events.

View Article and Find Full Text PDF

Atomically thin transition metal dichalcogenides (TMDCs) present a promising platform for numerous photonic applications due to excitonic spectral features, possibility to tune their constants by external gating, doping, or light, and mechanical stability. Utilization of such materials for sensing or optical modulation purposes would require a clever optical design, as by itself the 2D materials can offer only a small optical phase delay - consequence of the atomic thickness. To address this issue, we combine films of 2D semiconductors which exhibit excitonic lines with the Fabry-Perot resonators of the standard commercial SiO/Si substrate, in order to realize topological phase singularities in reflection.

View Article and Find Full Text PDF

Stretchable and flexible electronics has attracted broad attention over the last years. Nanocomposites based on elastomers and carbon nanotubes are a promising material for soft electronic applications. Despite the fact that single-walled carbon nanotube (SWCNT) based nanocomposites often demonstrate superior properties, the vast majority of the studies were devoted to those based on multiwalled carbon nanotubes (MWCNTs) mainly because of their higher availability and easier processing procedures.

View Article and Find Full Text PDF

Eumelanin is a widespread biomacromolecule pigment in the biosphere and has been widely investigated for numerous bioelectronics and energetic applications. Many of these applications depend on eumelanin's ability to conduct proton current at various levels of hydration. The origin of this behavior is connected to a comproportionation reaction between oxidized and reduced monomer moieties and water.

View Article and Find Full Text PDF

The GERmanium Detector Array (Gerda) collaboration searched for neutrinoless double- decay in Ge with an array of about 40 high-purity isotopically-enriched germanium detectors. The experimental signature of the decay is a monoenergetic signal at  keV in the measured summed energy spectrum of the two emitted electrons. Both the energy reconstruction and resolution of the germanium detectors are crucial to separate a potential signal from various backgrounds, such as neutrino-accompanied double- decays allowed by the Standard Model.

View Article and Find Full Text PDF

Piezoelectrets are artificial ferroelectrics that are produced from non-polar air-filled porous polymers by symmetry breaking through high-voltage-induced Paschen breakdown in air. A new strategy for three-layer polymer sandwiches is introduced by separating the electrical from the mechanical response. A 3D-printed grid of periodically spaced thermoplastic polyurethane (TPU) spacers and air channels was sandwiched between two thin fluoroethylene propylene (FEP) films.

View Article and Find Full Text PDF

Neutrinoless double- decay of Ge is searched for with germanium detectors where source and detector of the decay are identical. For the success of future experiments it is important to increase the mass of the detectors. We report here on the characterization and testing of five prototype detectors manufactured in inverted coaxial (IC) geometry from material enriched to 88% in Ge.

View Article and Find Full Text PDF

The GERmanium Detector Array (GERDA) experiment searched for the lepton-number-violating neutrinoless double-β (0νββ) decay of ^{76}Ge, whose discovery would have far-reaching implications in cosmology and particle physics. By operating bare germanium diodes, enriched in ^{76}Ge, in an active liquid argon shield, GERDA achieved an unprecedently low background index of 5.2×10^{-4} counts/(keV kg yr) in the signal region and met the design goal to collect an exposure of 100 kg yr in a background-free regime.

View Article and Find Full Text PDF

Polymer composites containing nanocarbon fillers are under intensive investigation worldwide due to their remarkable electromagnetic properties distinguished not only by components as such, but the distribution and interaction of the fillers inside the polymer matrix. The theory herein reveals that a particular effect connected with the homogeneity of a composite manifests itself in the terahertz range. Transmission time-domain terahertz spectroscopy was applied to the investigation of nanocomposites obtained by co-extrusion of PLA polymer with additions of graphene nanoplatelets and multi-walled carbon nanotubes.

View Article and Find Full Text PDF

We resolve the real-time coherent rotational motion of isolated water molecules encapsulated in fullerene-C cages by time-domain terahertz (THz) spectroscopy. We employ single-cycle THz pulses to excite the low-frequency rotational motion of water and measure the subsequent coherent emission of electromagnetic waves by water molecules. At temperatures below ~ 100 K, C lattice vibrational damping is mitigated and the quantum dynamics of confined water are resolved with a markedly long rotational coherence, extended beyond 10 ps.

View Article and Find Full Text PDF

Infrared (IR) and terahertz plasmons in two-dimensional (2D) materials are commonly excited by metallic or dielectric grating couplers with deep-submicron features fabricated by e-beam lithography. Mass reproduction of such gratings at macroscopic scales is a labor-consuming and expensive technology. Here, we show that localized plasmons in graphene can be generated on macroscopic scales with couplers based on randomly oriented particle-like nanorods (NRs) in close proximity to graphene layer.

View Article and Find Full Text PDF