Publications by authors named "Zhukov M"

Synthetic hydroxyapatite (HA) materials with antibacterial and biocompatible properties have potential for biomedical applications. The application of various computational methods is highly relevant for the optimal development of modern materials. In this work, we used molecular docking to determine the binding constants of tetracycline (TET) and quercetin (QUE) with hydroxyapatite and compared them to experimental data of the adsorption of tetracycline (TET) and quercetin (QUE) on the HA surface.

View Article and Find Full Text PDF
Article Synopsis
  • * Raman spectroscopy has been identified as an effective analytical method for chlorogenic acid, leveraging advancements like self-assembled gold nanoparticles to improve the sensitivity and reliability of detection.
  • * A new substrate fabrication method using "aqua-print" processes achieved a high enhancement factor for detecting chlorogenic acid, demonstrating accurate results across a specific concentration range and validating findings with theoretical computations.
View Article and Find Full Text PDF

In post-traumatic stress disorder (PTSD), anxiety-like symptoms are often associated with elevated noradrenaline levels and decreased serotonin. Selective serotonin reuptake inhibitors (SSRIs) are frequently used to treat anxiety, but elevated serotonin has been observed in some anxiety disorders. This study investigates stress-induced anxiety as an immediate effect of chronic stress exposure using the predator stress paradigm.

View Article and Find Full Text PDF

Stress-related anxiety disorders and anxiety-like behavior in post-traumatic stress disorder (PTSD) are associated with altered neurocircuitry pathways, neurotransmitter systems, and the activities of monoamine and glucocorticoid-metabolizing enzymes. Resveratrol, a natural polyphenol, is recognized for its antioxidant, anti-inflammatory, and antipsychiatric properties. Previous studies suggest that resveratrol reduces anxiety-like behavior in animal PTSD models by downregulating key enzymes such as 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD-1) and monoamine oxidases (MAOs).

View Article and Find Full Text PDF

The medicinal properties of resveratrol have garnered increasing attention from researchers. Extensive data have been accumulated on its use in treating cardiovascular diseases, immune system disorders, cancer, neurological diseases, and behavioral disorders. The protective mechanisms of resveratrol, particularly in anxiety-related stress disorders, have been well documented.

View Article and Find Full Text PDF

Currently, the efficacy of drug therapy for post-traumatic stress disorder or PTSD leaves much to be desired, making nutraceutical support a promising avenue for treatment. Recent research has identified the protective effects of resveratrol in PTSD. Here, we tested the behavioral and neurobiological effects of combining cheese consumption with resveratrol supplements in an experimental PTSD model.

View Article and Find Full Text PDF

PTSD is associated with disturbed hepatic morphology and metabolism. Neuronal mitochondrial dysfunction is considered a subcellular determinant of PTSD, but a link between hepatic mitochondrial dysfunction and hepatic damage in PTSD has not been demonstrated. Thus, the effects of experimental PTSD on the livers of high anxiety (HA) and low anxiety (LA) rats were compared, and mitochondrial determinants underlying the difference in their hepatic damage were investigated.

View Article and Find Full Text PDF

Periodic modulation of the deposition angle (PMDA) is a new method to deposit nanostructured and continuous layers with controllable periodic density fluctuation. The method is used for the magnetron sputtering of a WO layer for an electrochromic device (ECD). An experimental study indicates that the electrochromic coloration-bleaching rate nearly doubles and the electrochromic efficiency grows by about 25% in comparison with the traditional method.

View Article and Find Full Text PDF

Susceptibility and resilience to post-traumatic stress disorder (PTSD) are recognized, but their mechanisms are not understood. Here, the hexobarbital sleep test (HST) was used to elucidate mechanisms of PTSD resilience or susceptibility. A HST was performed in rats 30 days prior to further experimentation.

View Article and Find Full Text PDF

A concept of piezo-responsive hydrogen-bonded π-π-stacked organic frameworks made from Knoevenagel-condensed vanillin-barbiturate conjugates was proposed. Replacement of the substituent at the ether oxygen atom of the vanillin moiety from methyl (compound ) to ethyl (compound ) changed the appearance of the products from rigid rods to porous structures according to optical microscopy and scanning electron microscopy (SEM), and led to a decrease in the degree of crystallinity of corresponding powders according to X-ray diffractometry (XRD). Quantum chemical calculations of possible dimer models of vanillin-barbiturate conjugates using density functional theory (DFT) revealed that π-π stacking between aryl rings of the vanillin moiety stabilized the dimer to a greater extent than hydrogen bonding between carbonyl oxygen atoms and amide hydrogen atoms.

View Article and Find Full Text PDF

Optical nanogratings are widely used for different optical, photovoltaic, and sensing devices. However, fabrication methods of highly ordered gratings with the period around optical wavelength range are usually rather expensive and time consuming. In this article, we present high speed single-step approach for fabrication of highly ordered nanocomposite gratings with a period of less than 355 nm.

View Article and Find Full Text PDF

A long-standing question in nuclear physics is whether chargeless nuclear systems can exist. To our knowledge, only neutron stars represent near-pure neutron systems, where neutrons are squeezed together by the gravitational force to very high densities. The experimental search for isolated multi-neutron systems has been an ongoing quest for several decades, with a particular focus on the four-neutron system called the tetraneutron, resulting in only a few indications of its existence so far, leaving the tetraneutron an elusive nuclear system for six decades.

View Article and Find Full Text PDF

Rough surfaces possess complex topographies, which cannot be characterized by a single parameter. The selection of appropriate roughness parameters depends on a particular application. Large datasets representing surface topography possess orderliness, which can be expressed in terms of topological features in high-dimensional dataspaces reflecting properties such as anisotropy and the number of lay directions.

View Article and Find Full Text PDF

Actinium-225 (Ac) radiolabeled submicrometric core-shell particles (SPs) made of calcium carbonate (CaCO) coated with biocompatible polymers [tannic acid-human serum albumin (TA/HSA)] have been developed to improve the efficiency of local α-radionuclide therapy in melanoma models (B16-F10 tumor-bearing mice). The developed Ac-SPs possess radiochemical stability and demonstrate effective retention of Ac and its daughter isotopes. The SPs have been additionally labeled with zirconium-89 (Zr) to perform the biodistribution studies using positron emission tomography-computerized tomography (PET/CT) imaging for 14 days after intratumoral injection.

View Article and Find Full Text PDF

Alpha therapy provides an outstanding prospect in the treatment of recalcitrant and micrometastatic cancers. However, side effects on the normal tissues and organs (especially, kidneys) due to the release of daughter isotopes from α-emitters remain a bottleneck. In this work, calcium carbonate core-shell particles of different sizes were considered as isotope carriers for encapsulation of Ac (highly powerful alpha-emitter that generates 4 net alpha particle isotopes in a short decay chain) in order to achieve in vitro and in vivo retention of Ac and its daughter isotopes.

View Article and Find Full Text PDF

There exists a high demand for simple and affordable blood glucose monitoring methods. For this purpose, new generations of biosensors are being developed for possible in vivo or dermal use. We present (non)sulphated cellulose nanocrystal/magnetite thin films to act as dermal and oral glucose biosensors.

View Article and Find Full Text PDF

The ^{7}H system was populated in the ^{2}H(^{8}He,^{3}He)^{7}H reaction with a 26 AMeV ^{8}He beam. The ^{7}H missing mass energy spectrum, the ^{3}H energy and angular distributions in the ^{7}H decay frame were reconstructed. The ^{7}H missing mass spectrum shows a peak, which can be interpreted either as unresolved 5/2^{+} and 3/2^{+} doublet or one of these states at 6.

View Article and Find Full Text PDF

Growth factor incorporation in biomedical constructs for their local delivery enables specific pharmacological effects such as the induction of cell growth and differentiation. This has enabled a promising way to improve the tissue regeneration process. However, it remains challenging to identify an appropriate approach that provides effective growth factor loading into biomedical constructs with their following release kinetics in a prolonged manner.

View Article and Find Full Text PDF

In this study we address a novel design of a planar memristor and investigate its biocompatibility. An experimental prototype of the proposed memristor assembly has been manufactured using a hybrid nanofabrication method, combining sputtering of electrodes, patterning the insulating trenches, and filling them with a memristive substance. To pattern the insulating trenches, we have examined two nanofabrication techniques employing either a focused ion beam or a cantilever tip of an atomic force microscope.

View Article and Find Full Text PDF

The most remote isotope from the proton dripline (by 4 atomic mass units) has been observed: ^{31}K. It is unbound with respect to three-proton (3p) emission, and its decays have been detected in flight by measuring the trajectories of all decay products using microstrip detectors. The 3p emission processes have been studied by the means of angular correlations of ^{28}S+3p and the respective decay vertices.

View Article and Find Full Text PDF

An important area in modern malignant tumor therapy is the optimization of antitumor drugs pharmacokinetics. The use of some antitumor drugs is limited in clinical practice due to their high toxicity. Therefore, the strategy for optimizing the drug pharmacokinetics focuses on the generation of high local concentrations of these drugs in the tumor area with minimal systemic and tissue-specific toxicity.

View Article and Find Full Text PDF

The emission of neutron pairs from the neutron-rich N=12 isotones ^{18}C and ^{20}O has been studied by high-energy nucleon knockout from ^{19}N and ^{21}O secondary beams, populating unbound states of the two isotones up to 15 MeV above their two-neutron emission thresholds. The analysis of triple fragment-n-n correlations shows that the decay ^{19}N(-1p)^{18}C^{*}→^{16}C+n+n is clearly dominated by direct pair emission. The two-neutron correlation strength, the largest ever observed, suggests the predominance of a ^{14}C core surrounded by four valence neutrons arranged in strongly correlated pairs.

View Article and Find Full Text PDF

Quasifree one-proton knockout reactions have been employed in inverse kinematics for a systematic study of the structure of stable and exotic oxygen isotopes at the R^{3}B/LAND setup with incident beam energies in the range of 300-450  MeV/u. The oxygen isotopic chain offers a large variation of separation energies that allows for a quantitative understanding of single-particle strength with changing isospin asymmetry. Quasifree knockout reactions provide a complementary approach to intermediate-energy one-nucleon removal reactions.

View Article and Find Full Text PDF