Simulating the changes in ecosystem service value induced by land use changes in the peak cluster depression basin of southwestern Guangxi under multiple scenarios is of great importance for ensuring ecological security in the basin and enhancing regional ecosystem service value capabilities. Based on the CA-Logistic-Markov model, the land use of the study area was simulated under natural development, food security, and ecological protection scenarios in 2030. The ecosystem service value was calculated under each scenario using the equivalent factor correction model, and the spatiotemporal dynamic characteristics of the ecosystem service value in the peak cluster depression basin of southwestern Guangxi were quantitatively analyzed.
View Article and Find Full Text PDFSingle-crystal hexagonal boron nitride (hBN) is used extensively in many two-dimensional electronic and quantum devices, where defects significantly impact performance. Therefore, characterizing and engineering hBN defects are crucial for advancing these technologies. Here, we examine the capture and emission dynamics of defects in hBN by utilizing low-frequency noise (LFN) spectroscopy in hBN-encapsulated and graphene-contacted MoS field-effect transistors (FETs).
View Article and Find Full Text PDFThe rise in antibiotic-resistant pathogens, highly infectious viruses, and chronic diseases has prompted the search for rapid and versatile medical tests that can be performed by the patient. Field-effect transistor (FET)-based electronic biosensing platforms are particularly attractive due to their sensitivity, fast turn-around time, potential for parallel detection of multiple pathogens, and compatibility with semiconductor manufacturing. However, an unmet critical need is a scalable, site-selective multiplexed biofunctionalization method with nanoscale precision for immobilizing different types of pathogen-specific bioreceptors on individual FETs, preventing parallel detection of multiple targets.
View Article and Find Full Text PDFMonitoring the coordinated signaling of dopamine (DA) and serotonin (5-HT) is important for advancing our understanding of the brain. However, the co-detection and robust quantification of these signals at low concentrations is yet to be demonstrated. Here, we present the quantification of DA and 5-HT using nano-graphitic (NG) sensors together with fast-scan cyclic voltammetry (FSCV) employing an engineered N-shape potential waveform.
View Article and Find Full Text PDFFast-scan cyclic voltammetry (FSCV) with micron-sized carbon sensors is a promising approach for monitoring the fast dynamics of serotonin (5-HT) neuromodulatory signals in the brain. However, sensor performance using FSCV can be compromised by complex chemical reactions associated with the reduction and oxidation of 5-HT, posing considerable challenges to detection of 5-HT . Herein we describe the use of engineered graphitic sensors to characterize the complex electrochemistry of 5-HT under a wide range of measurement conditions, with the aim of optimizing the FSCV conditions for quantitative 5-HT detection.
View Article and Find Full Text PDFHeterostructures obtained from layered assembly of 2D materials such as graphene and hexagonal boron nitride have potential in the development of new electronic devices. Whereas various materials techniques can now produce macroscopic scale graphene, the construction of similar size heterostructures with atomically clean interfaces is still unrealized. A primary barrier has been the inability to remove polymeric residues from the interfaces that arise between layers when fabricating heterostructures.
View Article and Find Full Text PDFOrganosilicon compounds and polymers have found wide applications as synthetic building blocks and functional materials. Hydrosilylation is a common strategy toward the synthesis of organosilicon compounds and polymers. Although transition-metal-catalyzed hydrosilylation has achieved great advances, the metal-free hydrosilylation polymerization of dienes and bis(silane)s, especially the one suitable for both electron-rich and electron-deficient dienes, is largely lacking.
View Article and Find Full Text PDFThe electrospun graphene oxide/MIL-101(Fe)/poly(acrylonitrile-co-maleic acid) nanofibers (E-spun GO/MIL-101(Fe)/PANCMA NFs) were fabricated by a facile electrospinning method and used as integrated photocatalytic adsorbents (IPAs) to remove dye pollutant from water samples. Compared with E-spun GO/PANCMA and E-spun MIL-101(Fe)/PANCMA NFs, the fabricated E-spun GO/MIL-101(Fe)/PANCMA NFs exhibited higher adsorption ability and excellent photocatalytic activity towards a model pollutant Rhodamine B (RhB). Under the optimized conditions, the as-prepared IPAs achieved almost complete adsorption of RhB within 15 min with the maximum adsorption capacity of 10.
View Article and Find Full Text PDFMicroscopic interactions between electrochemical sensors and biomolecules critically influence the sensitivity. Here, we report an unexpected dependence of the sensitivity on the upper potential limit (UPL) in voltammetry experiments. In particular, we find that the sensitivity of substrate-supported nano-graphitic micro-sensors in response to dopamine increases almost linearly with the inverse of UPL in voltammetry experiments with rapid potential sweeps.
View Article and Find Full Text PDFPolymerized high internal phase emulsions as highly porous adsorption materials have received increasing attention and wide applications in separation science in recent years due to their remarkable merits such as highly interconnected porosity, high permeability, good thermal and chemical stability, and tailorable chemistry. In this review, we attempt to introduce some strategies to utilize polymerized high internal phase emulsions for separation science, and highlight the recent advances made in the applications of polymerized high internal phase emulsions for diverse separation of small organic molecules, carbon dioxide, metal ions, proteins, and other interesting targets. Potential challenges and future perspectives for polymerized high internal phase emulsion research in the field of separation science are also speculated at the end of this review.
View Article and Find Full Text PDFIEEE Trans Biomed Circuits Syst
August 2020
Electrochemical micro-sensors made of nano-graphitic (NG) carbon materials could offer high sensitivity and support voltammetry measurements at vastly different temporal resolutions. Here, we implement a configurable CMOS biochip for measuring low concentrations of bio-analytes by leveraging these advantageous features of NG micro-sensors. In particular, the core of the biochip is a discrete-time ∆Σ modulator, which can be configured for optimal power consumption according to the temporal resolution requirements of the sensing experiments while providing a required precision of ≈ 13 effective number of bits.
View Article and Find Full Text PDFUnderstanding the atomistic origin of defects in two-dimensional transition metal dichalcogenides, their impact on the electronic properties, and how to control them is critical for future electronics and optoelectronics. Here, we demonstrate the integration of thermochemical scanning probe lithography (tc-SPL) with a flow-through reactive gas cell to achieve nanoscale control of defects in monolayer MoS. The tc-SPL produced defects can present either p- or n-type doping on demand, depending on the used gasses, allowing the realization of field effect transistors, and p-n junctions with precise sub-μm spatial control, and a rectification ratio of over 10.
View Article and Find Full Text PDFThe proliferation of van der Waals (vdW) heterostructures formed by stacking layered materials can accelerate scientific and technological advances. Here, we report a strategy for constructing vdW heterostructures through the interface engineering of the exfoliation substrate using a sub-5 nm polymeric film. Our construction method has two main features that distinguish it from existing techniques.
View Article and Find Full Text PDFDirect synthesis of thin-film carbon nanomaterials on oxide-coated silicon substrates provides a viable pathway for building a dense array of miniaturized (micron-scale) electrochemical sensors with high performance. However, material synthesis generally involves many parameters, making material engineering based on trial and error highly inefficient. Here, we report a two-pronged strategy for producing engineered thin-film carbon nanomaterials that have a nano-graphitic structure.
View Article and Find Full Text PDFElectrospun reduced graphene oxide/TiO/poly(acrylonitrile-co-maleic acid) composite nanofibers (E-spun RGO/TiO/PANCMA NFs) were fabricated using electrospinning of the dispersive solution of PANCMA, GO and TiO followed by post-chemical reduction. The obtained composite nanofibers were compressed in a dialyzer and then used to absorb and degrade malachite green (MG) and leucomalachite green (LMG) from aqueous solution. Compared to the E-spun TiO/PANCMA and GO/TiO/PANCMA NFs, the E-spun RGO/TiO/PANCMA NFs exhibited higher adsorption capacity and photocatalytic degradation ability.
View Article and Find Full Text PDFIn this work, a novel FeO@Cu(btc)-embedded polymerized high internal phase emulsion (FeO@HKUST-1-polyHIPE) monolithic cake was synthesized, characterized and used as an adsorbent in the magnetic stir cake sorptive extraction (MSCSE) and determination of tetracycline antibiotics (TCs) in food samples by a combination of with high-performance liquid chromatography-fluorescence detection (HPLC-FLD). The prepared FeO@HKUST-1-polyHIPE monolithic composites displayed a strong extraction ability and high column capacity due to enhanced interactions such as π-π interactions, hydrogen bonding, and electrostatic interactions. The extraction and desorption conditions were evaluated, and the calibration curves of four spiked TCs were linear (R ≥ 0.
View Article and Find Full Text PDFPrevious studies have showed that the interaction between microRNAs (miRNAs) and leukemia stem cells (LSCs) may be a cause of drug resistance of acute myeloid leukemia (AML). However, whether miR-126 participates in the pathogenesis of AML remains unclear. In our study, we first examined the expression of miR-126 in CD34+ or CD34- cells isolated from blood samples and LSC cell line: KG-1a-LSCs and MOLM13-LSCs by qRT-PCR analysis.
View Article and Find Full Text PDFThe development of a reliable model allowing accurate predictions of biofilm growth in porous media relies on a good knowledge of the temporal evolution of biofilm structure within the porous network. Since little is known about the real 3-D structure of biofilms in porous media, this work was aimed at developing a new experimental protocol to visualize the 3-D microstructure of the inside of a porous medium using laboratory X-ray microtomography. A reliable and reproducible methodology is proposed for (1) growing a biofilm inside a porous medium, and (2) X-ray tomography-based characterization of the temporal development of the biofilm at the inlet of the biofilter.
View Article and Find Full Text PDF