Publications by authors named "Zhuge Q"

Volterra nonlinear equalizer (VNE) is widely used in intensity modulation and direct detection (IM/DD) systems because it employs multi-order operations to effectively capture the nonlinear characteristics of signals as a generic tool. In the specific directly-modulated laser with direct detection (DML-DD) link, the interaction between the chirp of DML and chromatic dispersion (CD) can be modeled as composite second-order (CSO) distortion. By incorporating the CSO model into the nonlinear equalizer, it is possible to better extract the feature of the end-to-end channel, achieving superior performance with lower complexity.

View Article and Find Full Text PDF

Introduction: T cell Antigen Coupler (TAC) T cells harness all signaling subunits of endogenous T cell receptor (TCR) to trigger T-cell activation and tumor cell lysis, with minimal release of cytokines. Some of the major obstacles to cellular immunotherapy in solid tumors include inefficient cell infiltration into tumors, lack of prolonged cellular persistence, and therapy-associated toxicity.

Methods: To boost the cytotoxic potential of TAC-T cells against solid tumors, we generated a novel NECTIN-4-targeted TAC-T variant, NECTIN-4 TAC28-T, which integrated the co-stimulatory CD28 cytoplasmic region, and compared the anti-tumor activities between NECTIN-4 TAC-T cells and NECTIN-4 TAC28-T cells in vitro and vivo.

View Article and Find Full Text PDF

Background: To identify biomarkers and develop an inflammatory score based on proper integration to improve risk prediction of delayed cerebral ischemia (DCI) and poor outcome in patients with aneurysmal subarachnoid hemorrhage (aSAH). We also further explore the mediation and interaction of DCI within the chain of events using the four-way effect decomposition.

Methods: Machine learning algorithms are used for biomarker selection and constructed the inflammatory score.

View Article and Find Full Text PDF

Digital radio-over-fiber (D-RoF) quantizes the wireless waveform to improve the noise tolerance in fronthaul links. Unlike conventional data transmission, the quantization bits exhibit different weights, offering a new strategy to protect the high-weight bits. By introducing a dual-drive MZM (DD-MZM)-based optical transmitter, the interaction between frequency chirp and chromatic dispersion (CD) results in eye closure/open.

View Article and Find Full Text PDF

Intracerebral hemorrhage (ICH) is a devastating form of stroke associated with significant morbidity and mortality. Microglia are intracranial innate immune cell that play critical roles in Intracerebral hemorrhage through direct or indirect means. Vesicle transport is a fundamental mechanism of intercellular communication.

View Article and Find Full Text PDF
Article Synopsis
  • Glioblastoma is a common and aggressive brain cancer, and researchers discovered that cancer cells can be transformed into neuron-like cells using specific proteins, NEUROG2 and SOXC.
  • The study utilized various techniques, including ChIP-seq and RNA-seq, to explore how NEUROG2 and SOXC factors interact in this reprogramming process, revealing that SOXC factors actually function as transcriptional repressors rather than activators.
  • The findings suggest that manipulating pathways involving RhoA and its effectors can mimic the effects of SOXC factors, providing potential new approaches for reprogramming glioblastoma cells into neurons.
View Article and Find Full Text PDF

Ethnopharmacological Relevance: Increasing evidence suggests that ferroptosis, an iron-dependent form of cell death characterized by lipid peroxidation, may play a substantial role in the traumatic brain injury (TBI) pathophysiology. 3-n-butylphthalide (NBP), a compound extracted from the seeds of Apium graveolens Linn (Chinese celery) and used in China to treat ischemic stroke, has demonstrated encouraging anti-reactive oxygen species (ROS) effects. Ascertaining whether NBP can inhibit ferroptosis and its mechanism could potentially expand its use in models of neurological injury and neurodegenerative diseases.

View Article and Find Full Text PDF

Analog radio-over-fiber (A-RoF) solutions for mobile fronthaul are regaining wide attention due to their high spectral efficiency and low complexity. However, the performance of A-RoF is usually limited by the fiber link fidelity. In this Letter, we propose and experimentally demonstrate an optical continuous pulse position modulation-based analog radio-over-fiber (OCPPM-RoF) scheme, in which the amplitudes of wireless waveforms are mapped to the time-domain positions of optical pulses to decouple the additive noise.

View Article and Find Full Text PDF

With the exponential growth in data density and user ends of wireless networks, fronthaul is tasked with supporting aggregate bandwidths exceeding thousands of gigahertz while accommodating high-order modulation formats. However, it must address the bandwidth and noise limitations imposed by optical links and devices in a cost-efficient manner. Here we demonstrate a high-fidelity fronthaul system enabled by self-homodyne digital-analog radio-over-fiber superchannels, using a broadband electro-optic comb and uncoupled multicore fiber.

View Article and Find Full Text PDF

The transplantation of bone marrow mesenchymal stem cells (MSCs) in stroke is hindered by the restricted rates of survival and differentiation. Ginsenoside compound K (CK), is reported to have a neuroprotective effect and regulate energy metabolism. We applied CK to investigate if CK could promote the survival of MSCs and differentiation into brain microvascular endothelial-like cells (BMECs), thereby alleviating stroke symptoms.

View Article and Find Full Text PDF

Objective: Chronic subdural hematoma (CSDH) is a neurological condition with high recurrence rates, primarily observed in the elderly population. Although several risk factors have been identified, predicting CSDH recurrence remains a challenge. Given the potential of machine learning (ML) to extract meaningful insights from complex data sets, our study aims to develop and validate ML models capable of accurately predicting postoperative CSDH recurrence.

View Article and Find Full Text PDF

Background: Postoperative pneumonia (POP) is one of the primary complications after aneurysmal subarachnoid hemorrhage (aSAH) and is associated with postoperative mortality, extended hospital stay, and increased medical fee. Early identification of pneumonia and more aggressive treatment can improve patient outcomes. We aimed to develop a model to predict POP in aSAH patients using machine learning (ML) methods.

View Article and Find Full Text PDF

Driven by the scarcity of effective treatment options in clinical settings, the present study aimed to identify a new potential target for Alzheimer's disease (AD) treatment. We focused on Lars2, an enzyme synthesizing mitochondrial leucyl-tRNA, and its role in maintaining mitochondrial function. Bioinformatics analysis of human brain transcriptome data revealed downregulation of Lars2 in AD patients compared to healthy controls.

View Article and Find Full Text PDF

Automatic test paper design is critical in education to reduce workloads for educators and facilitate an efficient teaching process. However, current designs fail to satisfy the realistic teaching requirements of educators, including the consideration of both test quality and efficiency. This is the main reason why teachers still manually construct tests in most teaching environments.

View Article and Find Full Text PDF

The digital radio-over-fiber (D-RoF) transmission with two-level coding (TLC) is proposed and demonstrated in this Letter. A joint design considering the importance of quantization bits, the protection ability of forward error correction (FEC), and the bit error ratio of quadrature amplitude modulation (QAM) symbols is realized. In TLC-based D-RoF systems, the more significant bits among quantization bits are protected by a FEC and are assigned to the least reliable bits of modulated QAM symbols.

View Article and Find Full Text PDF

Bandwidth limitation in optoelectrical components and the chromatic dispersion-induced power fading phenomenon cause severe inter-symbol interference (ISI) in high-speed intensity modulation and direct detection (IM-DD) optical interconnects. While the equalizer implemented in the receiver's digital signal processing procedure can mitigate ISI, it also inevitably enhances the noise located in the decayed frequency region, known as equalization-enhanced colored noise (EECN). Additionally, the nonlinear impairments of the modulator and photodetector also deteriorate the performance of the IM-DD system, especially for high-order modulation formats.

View Article and Find Full Text PDF

The digital-analog radio-over-fiber (DA-RoF) scheme offers a high-fidelity and spectrally efficient solution for future mobile fronthaul. However, to be implemented in the low-cost directly modulated laser with direct detection (DML-DD) link, both the digital and analog parts in DA-RoF modulation would suffer from the composite second-order (CSO) and composite triple beat (CTB) caused by the chirp-dispersion interaction. In this Letter, we propose and experimentally demonstrate a computationally efficient composite triple beat cancellation (CTB-C) algorithm for DA-RoF fronthaul in the dispersion-uncompensated C-band DML-DD link.

View Article and Find Full Text PDF

The CRISPR genome editing technology is a crucial tool for enabling revolutionary advancements in plant genetic improvement. This review shows the latest developments in CRISPR/Cas9 genome editing system variants, discussing their benefits and limitations for plant improvement. While this technology presents immense opportunities for plant breeding, it also raises serious biosafety concerns that require careful consideration, including potential off-target effects and the unintended transfer of modified genes to other organisms.

View Article and Find Full Text PDF

Background: Gastric cancer is a highly prevalent and fatal disease. Accurate differentiation between early gastric cancer (EGC) and advanced gastric cancer (AGC) is essential for personalized treatment. Currently, the diagnostic accuracy of computerized tomography (CT) for gastric cancer staging is insufficient to meet clinical requirements.

View Article and Find Full Text PDF

Direct detection system is expected to possess the phase and polarization diversity in order to achieve high spectral efficiency and fiber impairment compensation such as chromatic dispersion and polarization rotation. In this Letter, we theoretically extend the concept of the proposed Jones-space field recovery (JSFR) to include a dynamic polarization rotation matrix and experimentally demonstrate the rapid polarization state tracking ability of the JSFR receiver based on a 3 × 3 optical coupler. Under a rotation of the state of polarization at a rate of 1 Mrad/s, we successfully transmit 59-GBd dual-polarization 16-ary quadrature-amplitude-modulation signals over an 80-km standard single-mode fiber based on a decision-directed least mean square (DD-LMS) or a recursive least square (DD-RLS), with a bit-error rate below the 14% hard-decision forward error correction threshold of 1 × 10.

View Article and Find Full Text PDF

Plants have evolved to adapt and grow in hot and cold climatic conditions. Some also adapt to daily and seasonal temperature changes. Epigenetic modifications play an important role in regulating plant tolerance under such conditions.

View Article and Find Full Text PDF

The pathogen-associated protein 1 (PR1) plays an important role in plant response to biotic and abiotic stresses. In this study, 17 PtPR1 genes were identified in Populus trichocarpa genome. The 17 PtPR1 genes were distributed on 7 chromosomes, and divided into A, B subfamilies by evolutionary tree analysis.

View Article and Find Full Text PDF

Multi-model data can enhance brain tumor segmentation for the rich information it provides. However, it also introduces some redundant information that interferes with the segmentation estimation, as some modalities may catch features irrelevant to the tissue of interest. Besides, the ambiguous boundaries and irregulate shapes of different grade tumors lead to a non-confidence estimate of segmentation quality.

View Article and Find Full Text PDF

Cell fate and proliferation ability can be transformed through reprogramming technology. Reprogramming glioblastoma cells into neuron-like cells holds great promise for glioblastoma treatment, as it induces their terminal differentiation. NeuroD4 (Neuronal Differentiation 4) is a crucial transcription factor in neuronal development and has the potential to convert astrocytes into functional neurons.

View Article and Find Full Text PDF
Article Synopsis
  • A new low-complexity scheme called amplitude-division irregular QAM (AD-Ir-QAM) formats is introduced, designed for irregular uniform quadrature amplitude modulation with Gray mapping.
  • These formats have a lower peak-to-average power ratio (PAPR) and perform better under peak-power constraints compared to conventional probabilistic shaping (PS-MB).
  • Experimental results show that AD-Ir-100QAM provides significant gains in power budget when compared to traditional PS methods, achieving 2.1 dB over PS-MB-100QAM and 0.5 dB over PS-Ir-100QAM at a generalized mutual information of 4.5 bits/2D-symbol.
View Article and Find Full Text PDF